Elasticsearch——核心概念 & 系统架构 & 集群中常见问题 & 路由计算 & 分片控制

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch——核心概念 & 系统架构 & 集群中常见问题 & 路由计算 & 分片控制

1.ES核心概念


1.1 索引(index)

一个索引就是一个拥有几分相似特征的文档的集合

比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录就是索引的意思,目录可以提高查询速度。

Elasticsearch索引的精髓:一切设计都是为了提高搜索的性能。(就类似于MySQL中的数据库)


1.2 类型(Type)

在一个索引中,你可以定义一种或多种类型。一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具有一组共同字段的文档定义一个类型。不同的版本,类型发生了不同的变化。(在ES 7.x之后已经默认不再支持Type


1.3 文档(Document)

一个文档是一个可被索引的基础信息单元,也就是一条数据。

比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以 JSONJavascript Object Notation)格式来表示,而 JSON 是一个到处存在的互联网数据交互格式。

在一个 index 里面,你可以存储任意多的文档。


1.4 字段(Field)

相当于是数据库表的字段,对文档数据根据不同属性进行的分类标识。


1.5 映射(Mapping)

mapping是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。


1.6 分片(Shards)

一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有 10 亿文档数据的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的索引,这个索引可以被放置到集群中的任何节点上。


分片很重要,主要有两方面的原因:


       1
)允许你水平分割 / 扩展你的内容容量。
       2
)允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。


至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由 Elasticsearch 管理的,对于作为用户的你来说,这些都是透明的,无需过分关心。被混淆的概念是,一个 Lucene 索引我们在 Elasticsearch 称作分片一个Elasticsearch 索引是分片的集合。 Elasticsearch 在索引中搜索的时候,他发送查询到每一个属于索引的分片(Lucene 索引) ,然后合并每个分片的结果到一个全局的结果集。


1.7 副本(Replicas)

在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)


复制分片之所以重要,有两个主要原因:


1.    在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。

2.    扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。


总之,每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。

默认情况下,Elasticsearch 中的每个索引被分片 1 个主分片和 1 个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有 1 个主分片和另外 1 个复制分片(1 个完全拷贝),这样的话每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。


1.8 分配(Allocation)

将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。

2.ES系统架构


一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同 cluster.name 配置的节点组成,它们共同承担数据和负载的压力。当有节点加入集群中或者从集群中移除节点时,集群将会重新平均分布所有的数据。


当一个节点被选举成为主节点时,它将负责管理集群范围内的所有变更,例如增加、删除索引,或者增加、删除节点等。而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。任何节点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。


作为用户,我们可以将请求发送到集群中的任何节点,包括主节点。每个节点都知道任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。无论我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。

3.ES集群中常见的问题


3.1 单节点集群

首先,我们在包含一个空节点的集群内创建名为 users 的索引,为了演示目的,我们将分配 3个主分片和一份副本(每个主分片拥有一个副本分片)。也就是说一会要在当前集群下启动3个节点(3个主分片),每个主分片都有相应的一份副本分片,共6个分片。


下面,首先启动集群的一个节点 node-1001


我们的集群现在是拥有一个索引的单节点集群。所有 3 个主分片都被分配在 node-1


集群健康值: yellow( 3 of 6 ) : 表示当前集群的全部主分片都正常运行,但是副本分片没有全部处在正常状态。


3个主分片正常,但是3 个副本分片都是 Unassigned —— 它们都没有被分配到任何节点。在同一个节点上既保存原始数据又保存副本是没有意义的,因为一旦失去了那个节点,我们也将丢失该节点上的所有副本数据。


就是说我们不能把一份原始数据和它对应的备份数据存到同一个节点中,因为一旦这个节点出故障、down掉,那么这份数据彻底就没了。所以一般将原始数据和它的备份数据分开存放(原始数据存放在node-1001、备份数据存放在node-1002这样的模式)


3.2 故障转移

当集群中只有一个节点在运行时,意味着会有一个单点故障问题——没有冗余。幸运的是,我们只需再启动一个节点即可防止数据丢失。当你在同一台机器上启动了第二个节点时,只要它和第一个节点有同样的 cluster.name 配置,它就会自动发现集群并加入到其中。但是在不同机器上启动节点的时候,为了加入到同一集群,你需要配置一个可连接到的单播主机列表。之所以配置为使用单播发现,以防止节点无意中加入集群。只有在同一台机器上运行的节点才会自动组成集群。


如果启动了第二个节点,我们的集群将会拥有两个节点的集群 : 所有主分片和副本分片都已被分配。


集群健康值:green( 6 of 6 ) : 表示所有 6 个分片(包括 3 个主分片和 3 个副本分片)都在正常运行。


3个主分片正常;当第二个节点加入到集群后,3 个副本分片将会分配到这个节点上——每个主分片对应一个副本分片。这意味着当集群内任何一个节点出现问题时,我们的数据都完好无损。所有新近被索引的文档都将会保存在主分片上,然后被并行的复制到对应的副本分片上。这就保证了我们既可以从主分片上获得文档、又可以从副本分片上获得文档。


3.3 水平扩容

怎样为我们的正在增长中的应用程序按需扩容呢?


当启动了第三个节点,我们的集群将会拥有三个节点的集群 : 为了分散负载而对分片进行重新分配。


集群健康值:green( 6 of 6 ) : 表示所有 6 个分片(包括 3 个主分片和 3 个副本分片)都在正常运行。


Node 1 Node 2 上各有一个分片被迁移到了新的 Node 3 节点,现在每个节点上都拥有2个分片,而不是之前的 3 个。这表示每个节点的硬件资源(CPU, RAM, I/O)将被更少的分片所共享,每个分片的性能将会得到提升。


分片是一个功能完整的搜索引擎,它拥有使用一个节点上的所有资源的能力。我们这个拥有 6 个分片(3 个主分片和 3 个副本分片)的索引可以最大扩容到 6 个节点,每个节点上存在一个分片,并且每个分片拥有所在节点的全部资源。


但是如果我们想要扩容超过 6 个节点怎么办呢?


主分片的数目在索引创建时就已经确定了下来。实际上,这个数目定义了这个索引能够存储的最大数据量。(实际大小取决于你的数据、硬件和使用场景。)但是,读操作——搜索和返回数据——可以同时被主分片副本分片所处理,所以当你拥有越多的副本分片时,也将拥有越高的吞吐量。


在运行中的集群上是可以动态调整副本分片数目的,我们可以按需伸缩集群。让我们把副本数从默认的 1 增加到 2

users索引现在拥有 9 个分片:3 个主分片和 6 个副本分片。这意味着我们可以将集群扩容到 9 个节点,每个节点上一个分片。相比原来 3 个节点时,集群搜索性能可以提升 3 倍。


当然,如果只是在相同节点数目的集群上增加更多的副本分片并不能提高性能,因为每个分片从节点上获得的资源会变少。你需要增加更多的硬件资源来提升吞吐量。但是更多的副本分片数提高了数据冗余量:按照上面的节点配置,我们可以在失去 2 个节点的情况下不丢失任何数据。


3.4 应对故障

我们关闭第一个节点,这时集群的状态为: 关闭了一个节点后的集群。

我们关闭的节点是一个主节点。而集群必须拥有一个主节点来保证正常工作,所以发生的第一件事情就是选举一个新的主节点: Node 3 。在我们关闭 Node 1 的同时也失去了主分片 1 2 ,并且在缺失主分片的时候索引也不能正常工作。如果此时来检查集群的状况,我们看到的状态将会为 red :不是所有主分片都在正常工作。

幸运的是,在其它节点上存在着这两个主分片的完整副本,所以新的主节点立即将这些分片在 Node 2 Node 3 上对应的副本分片提升为主分片,此时集群的状态将会为yellow。这个提升主分片的过程是瞬间发生的,如同按下一个开关一般。


为什么我们集群状态是 yellow 而不是 green 呢?

虽然我们拥有所有的三个主分片,但是同时设置了每个主分片需要对应 2 份副本分片,而此时只存在一份副本分片,所以集群不能为 green 的状态。不过我们不必过于担心:如果我们同样关闭了 Node 2 ,我们的程序依然可以保持在不丢任何数据的情况下运行,因为Node 3 为每一个分片都保留着一份副本。


如果我们重新启动 Node 1 ,集群可以将缺失的副本分片再次进行分配,那么集群的状态也将恢复成之前的状态。如果 Node 1 依然拥有着之前的分片,它将尝试去重用它们,同时仅从主分片复制发生了修改的数据文件。和之前的集群相比,只是 Master 节点切换了。

4.路由计算


当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 1 还是分片 2 中呢?首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了。实际上,这个过程是根据下面这个公式决定的:



routing是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。


routing通过hash 函数生成一个数字,然后这个数字再除以number_of_primary_shards (主分片的数量)后得到余数。这个分布在 0 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

5.分片控制


我们可以发送请求到集群中的任一节点。每个节点都有能力处理任意请求。每个节点都知道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。在下面的例子中,将所有的请求发送到 Node 1,我们将其称为协调节点(coordinating node)


当发送请求的时候,为了扩展负载,更好的做法是轮询集群中所有的节点。


5.1 写流程

新建、索引和删除请求都是操作,必须在主分片上面完成之后才能被复制到相关的副本分片。


5.2 读流程

我们可以从主分片或者从其它任意副本分片检索文档。


5.3 更新流程

部分更新一个文档结合了先前说明的读取和写入流程:


1.    客户端向 Node 1 发送更新请求。

2.    它将请求转发到主分片所在的 Node 3

3.    Node 3 从主分片检索文档,修改 _source 字段中的 JSON ,并且尝试重新索引主分片的文档。如果文档已经被另一个进程修改,它会重试步骤 3 ,超过 retry_on_conflict 次后放弃。

4.    如果 Node 3 成功地更新文档,它将新版本的文档并行转发到 Node 1 Node 2 上的副本分片,重新建立索引。一旦所有副本分片都返回成功, Node 3 向协调节点也返回成功,协调节点向客户端返回成功。


5.4 多文档操作流程

mget bulk API 的模式类似于单文档模式。区别在于协调节点知道每个文档存在于哪个分片中。它将整个多文档请求分解成每个分片的多文档请求,并且将这些请求并行转发到每个参与节点。

协调节点一旦收到来自每个节点的应答,就将每个节点的响应收集整理成单个响应,返回给客户端。


用单个 mget 请求取回多个文档所需的步骤顺序:


1.    客户端向 Node 1 发送 mget 请求。

2.    Node 1 为每个分片构建多文档获取请求,然后并行转发这些请求到托管在每个所需的主分片或者副本分片的节点上。

一旦收到所有答复, Node 1 构建响应并将其返回给客户端。

可以对 docs 数组中每个文档设置 routing 参数。


bulk API允许在单个批量请求中执行多个创建、索引、删除和更新请求。


1.    客户端向 Node 1 发送 bulk 请求。

2.    Node 1 为每个节点创建一个批量请求,并将这些请求并行转发到每个包含主分片的节点主机。

3.    主分片一个接一个按顺序执行每个操作。当每个操作成功时,主分片并行转发新文档(或删除)到副本分片,然后执行下一个操作。一旦所有的副本分片报告所有操作成功,该节点将向协调节点报告成功,协调节点将这些响应收集整理并返回给客户端。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
132 6
|
1月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
54 3
|
3天前
|
人工智能 云计算 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日~10日在江苏张家港召开的CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变革。
阿里云引领智算集群网络架构的新一轮变革
|
4天前
|
负载均衡 Dubbo 算法
集群容错架构设计
集群容错架构设计
15 1
集群容错架构设计
|
3天前
|
人工智能 运维 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日至10日,CCF ChinaNet(中国网络大会)在江苏张家港召开,众多院士、教授和技术领袖共聚一堂,探讨网络未来发展方向。阿里云研发副总裁蔡德忠发表主题演讲,展望智算技术发展趋势,提出智算网络架构变革的新思路,发布高通量以太网协议和ENode+超节点系统规划,引起广泛关注。阿里云HPN7.0引领智算以太网生态蓬勃发展,成为业界标杆。未来,X10规模的智算集群将面临新的挑战,Ethernet将成为主流方案,推动Scale up与Scale out的融合架构,提升整体系统性能。
|
1天前
|
存储 索引
Elasticsearch分布式架构
【11月更文挑战第2天】
7 1
|
24天前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
24天前
|
负载均衡 安全 调度
Docker Swarm集群架构
【10月更文挑战第8天】
49 1
|
27天前
|
存储 缓存 监控
深入解析:Elasticsearch集群性能调优策略与最佳实践
【10月更文挑战第8天】Elasticsearch 是一个分布式的、基于 RESTful 风格的搜索和数据分析引擎,它能够快速地存储、搜索和分析大量数据。随着企业对实时数据处理需求的增长,Elasticsearch 被广泛应用于日志分析、全文搜索、安全信息和事件管理(SIEM)等领域。然而,为了确保 Elasticsearch 集群能够高效运行并满足业务需求,需要进行一系列的性能调优工作。
58 3
|
1月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
38 4
下一篇
无影云桌面