开发者社区> 异步社区> 正文

《Python数据分析》一2.10 用布尔型变量索引NumPy数组

简介:
+关注继续查看

本节书摘来自异步社区《Python数据分析》一书中的第2章,第2.10节,作者【印尼】Ivan Idris,更多章节内容可以访问云栖社区“异步社区”公众号查看

2.10 用布尔型变量索引NumPy数组

布尔型索引是指根据布尔型数组来索引元素的方法,属于花式索引系列。因为布尔型索引是花式索引的一个分类,所以它们的使用方法基本相同。

下面用代码(详见本书代码包中的boolean_indexing.py文件)具体演示其使用方法:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()

def get_indices(size):
  arr = np.arange(size)
  return arr % 4 == 0

lena1 = lena.copy() 
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)
lena2 = lena.copy() 
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
plt.subplot(212)
plt.imshow(lena2)
plt.show()

上述代码利用一种特殊的迭代器对象来索引元素,下面进行简单说明。

1.在对角线上画点。

这类似于花式索引,不过这里选择的是照片对角线上可以被4整除的那些位置上的点。

def get_indices(size):
  arr = np.arange(size)
  return arr % 4 == 0

然后仅绘出选定的那些点。

lena1 = lena.copy() 
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)

2.根据元素值的情况置0``。

选取数组值介于最大值的1/4到3/4的那些元素,将其置0。

lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 
0

3.两幅新照片如图2-7所示。


f6e020b049fc6ee4066380fc1b46dfb4765914f5

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
使用Python进行数据清洗与预处理:Pandas和NumPy的应用
在数据分析和机器学习的过程中,数据清洗和预处理是非常重要的一步。Python提供了许多强大的库来帮助我们有效地进行数据清洗和预处理。本文将重点介绍两个常用的库:Pandas和NumPy。我们将使用一个实际的数据集来演示如何使用这两个库进行数据清洗和预处理,并展示其在数据分析中的应用。
22 0
python之numpy相关知识
python之numpy相关知识
14 0
Python中NumPy库的相关操作
Python中NumPy库的相关操作
18 0
Python 数学运算库Numpy入门基础(一)创建数组
Python 数学运算库Numpy入门基础(一)创建数组
20 0
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(4)
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(4)
30 0
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(3)
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(3)
35 0
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(2)
【Python】【Numpy+Pandas数据处理·闯关】和鲸社区学习笔记day(2)
53 0
+关注
异步社区
异步社区(www.epubit.com)是人民邮电出版社旗下IT专业图书旗舰社区,也是国内领先的IT专业图书社区,致力于优质学习内容的出版和分享,实现了纸书电子书的同步上架,于2015年8月上线运营。公众号【异步图书】,每日赠送异步新书。
文章
问答
视频
文章排行榜
最热
最新
相关电子书
更多
双剑合璧-Python和大数据计算平台的结合
立即下载
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载