《Python数据分析》一第2章 NumPy数组2.1 NumPy数组对象

简介:

本节书摘来自异步社区《Python数据分析》一书中的第2章,第2.1节,作者【印尼】Ivan Idris,更多章节内容可以访问云栖社区“异步社区”公众号查看

第2章 NumPy数组

Python数据分析
在前面部分,我们已经安装了NumPy和几个关键Python程序库,并动手编写了一些代码。在本章中,我们将正式步入NumPy数组的世界,带领大家一起学习NumPy和数组的知识。阅读本章后,你会对NumPy数组及其相关函数有个基本了解。

本章涉及的主题如下所示。

  • 数据类型。
  • 数组类型。
  • 类型转换。
  • 创建数组。
  • 索引。
  • 花式索引。
  • 切片(Slicing)。
  • 处理数组的形状。

2.1 NumPy数组对象

NumPy中的多维数组称为ndarray,它有两个组成部分。

  • 数据本身。
  • 描述数据的元数据。

在数组的处理过程中,原始信息不受影响,变化的只是元数据而已。

在之前的章节中,我们曾经用arange()函数来生成数组。实际上,那是用来存放一组数值的一维数组,这里的ndarray则可以具有一个以上的维度。

NumPy数组的优势
NumPy数组通常是由相同种类的元素组成的,即数组中的数据项的类型必须一致。NumPy数组元素类型一致的好处是:由于知道数组元素的类型相同,所以能轻松确定存储数组所需空间的大小。同时,NumPy数组还能够运用向量化运算来处理整个数组;而完成同样的任务,Python的列表则通常必须借助循环语句遍历列表,并对逐个元素进行相应的处理。此外,NumPy使用了优化过的C API,所以运算速度格外快。

NumPy数组的索引方法与Python类似,下标从0开始。NumPy数组的数据类型由特殊的对象指定,本章后面的部分将对这些对象进行详细介绍。

今后,我们会经常利用arange()子例程来建立数组,该函数取自本书附带的arrayattributes.py文件。本章中的代码片断大都取自IPython会话。注意,IPython启动时会自动导入NumPy库。下面代码展示了如何获得数组的数据类型:

In: a = arange(5)
In: a.dtype
Out: dtype('int64')

以上数组的数据类型为int64(至少在作者的电脑上是这样的),不过,如果你的Python为32位版本的话,得到的结果将是int32。无论上面哪一种情况,都是在处理整型变量(64位或者32位)。对于数组,除了要知道数据类型外,还要注意其形状,这一点非常重要。在第1章“Python程序库入门”中,我们曾经举例说明向量(一维NumPy数组)的创建方法。数学家会经常用到向量,但对我们来说,最常用的却是更高维度的对象。下面来看刚刚生成的那个向量的形状:

In: a
Out: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)

如你所见,该向量有5个元素,它们的值分别是从0到4。该数组的shape属性是一个元组(就本例而言,这是一个单元素元组),存放的是数组在每一个维度的长度。

相关文章
|
4月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
431 1
|
5月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
300 3
|
7月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
887 0
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
5月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
187 4
|
5月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
6月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
6月前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
638 3
|
6月前
|
Python
解决Python中AttributeError:'image'对象缺少属性'read_file'的问题策略。
通过上述策略综合考虑,您将能够定位问题并确定如何解决它。记住,Python社区很庞大,也很乐于帮助解决问题,因此不要害怕在求助时提供尽可能多的上下文和您已经尝试过的解决方案。
181 0
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。

推荐镜像

更多