学会使用 NumPy:基础、随机、ufunc 和练习测试

本文涉及的产品
性能测试 PTS,5000VUM额度
可观测监控 Prometheus 版,每月50GB免费额度
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: NumPy是Python的数值计算库,提供高效的多维数组对象`ndarray`和相关运算函数。它比Python列表快50倍,广泛用于数据科学,其中数组操作至关重要。要创建数组,可以使用`np.array()`。安装NumPy只需运行`pip install numpy`,导入时常用`import numpy as np`作为别名。要检查版本,使用`np.__version__`。

NumPy

NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。

基本

随机

ufunc

通过测验测试学习

检验您对 NumPy 的掌握程度。

通过练习学习

NumPy 练习

练习:

请插入创建 NumPy 数组的正确方法。

arr = np.
([1, 2, 3, 4, 5])

示例

创建 NumPy 数组:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)
print(type(arr))

输出:

[1 2 3 4 5]
<class 'numpy.ndarray'>

NumPy 简介

什么是 NumPy?

NumPy 是一个用于处理数组的 Python 库。它代表“Numerical Python”。它提供了一个称为 ndarray 的多维数组对象,以及用于操作这些数组的高效函数。NumPy 还提供了用于线性代数、傅里叶变换和矩阵领域的函数。

NumPy 由 Travis Oliphant 于 2005 年创建,是一个开源项目,可以免费使用。

为什么使用 NumPy?

在 Python 中,我们有列表来实现数组的功能,但是它们处理起来速度较慢。NumPy 旨在提供一个比传统 Python 列表快 50 倍的数组对象。NumPy 中的数组对象称为 ndarray,它提供了许多支持函数,使得与 ndarray 的操作非常简单。

在数据科学中,数组被非常频繁地使用,速度和资源非常重要。

数据科学:是计算机科学的一个分支,研究如何存储、使用和分析数据以从中获得信息。

为什么 NumPy 比列表快?

NumPy 数组在内存中是连续存储的,而不像列表那样存储不连续,因此进程可以非常高效地访问和操作它们。这种行为在计算机科学中称为局部性引用。

这就是 NumPy 比列表更快的主要原因。此外,它还经过优化以与最新的 CPU 架构配合工作。

NumPy 是用哪种语言编写的?

NumPy 是一个 Python 库,部分是用 Python 编写的,但大多数需要快速计算的部分是用 C 或 C++ 编写的。

NumPy 入门

安装 NumPy

如果您已经安装了 Python 和 PIP,则安装 NumPy 非常简单。

使用以下命令进行安装:

C:\Users\Your Name>pip install numpy

如果此命令失败,则可以使用已经安装了 NumPy 的 Python 发行版,如 Anaconda、Spyder 等。

导入 NumPy

一旦安装了 NumPy,通过添加 import 关键字将其导入到您的应用程序中:

import numpy

现在 NumPy 已经被导入并且可以使用了。

示例:

import numpy

arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

NumPy 的别名 np

通常,NumPy 被导入时会使用 np 别名。

别名:在 Python 中,别名是指同一个东西的另一个名称。

可以使用 as 关键字在导入时创建别名:

import numpy as np

现在可以使用 np 来引用 NumPy 包,而不是使用 numpy

示例

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

检查 NumPy 版本

NumPy 版本信息存储在 __version__ 属性中。

示例

import numpy as np

print(np.__version__)

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关文章
|
机器学习/深度学习 数据挖掘 测试技术
软件测试|Python科学计算神器numpy教程(十二)
软件测试|Python科学计算神器numpy教程(十二)
|
4月前
|
Python
numpy | 插入不定长字符数组测试OK
本文介绍了如何在numpy中创建和操作不定长字符数组,包括插入和截断操作的测试。
|
7月前
|
存储 数据处理 C语言
NumPy 通用函数(ufunc):高性能数组运算的利器
NumPy的通用函数(ufunc)提供高性能的逐元素运算,支持向量化操作和广播机制,能应用于数组的数学、逻辑和比较运算。ufunc可提高计算速度,避免低效的循环,并允许自定义函数以满足特定需求。例如,ufunc实现加法比循环更高效。通过`frompyfunc`可创建自定义ufunc。判断函数是否为ufunc,可检查其类型是否为`numpy.ufunc`。ufunc练习包括数组的平方、平方根、元素积及性能对比。
92 0
|
测试技术 数据处理 Python
软件测试|Python科学计算神器numpy教程(十)
软件测试|Python科学计算神器numpy教程(十)
|
测试技术 索引 Python
软件测试|Python科学计算神器numpy教程(七)
软件测试|Python科学计算神器numpy教程(七)
|
数据可视化 数据挖掘 测试技术
软件测试|Python科学计算神器numpy教程(三)
软件测试|Python科学计算神器numpy教程(三)
|
数据库
解决numpy.core._exceptions.UFuncTypeError: ufunc ‘add‘ did not contain a loop with signature matching
解决numpy.core._exceptions.UFuncTypeError: ufunc ‘add‘ did not contain a loop with signature matching
1240 0
解决numpy.core._exceptions.UFuncTypeError: ufunc ‘add‘ did not contain a loop with signature matching
|
测试技术 Serverless Python
软件测试|Python科学计算神器numpy教程(十一)
软件测试|Python科学计算神器numpy教程(十一)
|
机器学习/深度学习 测试技术 数据处理
软件测试|Python科学计算神器numpy教程(九)
软件测试|Python科学计算神器numpy教程(九)
|
测试技术 数据处理 Python
软件测试|Python科学计算神器numpy教程(八)
软件测试|Python科学计算神器numpy教程(八)