从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。

机器学习项目从数据预处理到模型部署涉及多个关键步骤,每一步都对最终模型的性能和可靠性有着重要影响。本文将通过一个具体的案例,详细介绍从数据预处理到模型训练再到模型部署的全过程,帮助读者掌握机器学习项目中的最佳实践。

假设我们要构建一个预测房价的模型。我们将使用 Python 和一些常见的机器学习库,如 Pandas、Scikit-learn 和 Flask。以下是详细的步骤和示例代码。

数据预处理

首先,我们需要获取和清洗数据。假设我们已经有一个包含房价数据的 CSV 文件 house_prices.csv

import pandas as pd

# 加载数据
data = pd.read_csv('house_prices.csv')

# 查看数据基本信息
print(data.info())
print(data.describe())

# 处理缺失值
data.fillna(data.mean(), inplace=True)

# 转换类别变量
data = pd.get_dummies(data, columns=['neighborhood', 'style'])

# 分割特征和标签
X = data.drop('price', axis=1)
y = data['price']
AI 代码解读

特征选择和工程

特征选择和工程是提高模型性能的关键步骤。我们可以通过相关性分析和特征缩放来优化特征。

from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.preprocessing import StandardScaler

# 特征选择
selector = SelectKBest(f_regression, k=10)
X_selected = selector.fit_transform(X, y)

# 特征缩放
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_selected)
AI 代码解读

模型训练

选择合适的模型并进行训练是机器学习项目的核心。我们将使用线性回归模型作为示例。

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
AI 代码解读

模型调优

通过交叉验证和超参数调优,可以进一步提升模型的性能。

from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {
   'fit_intercept': [True, False], 'normalize': [True, False]}

# 创建GridSearchCV对象
grid_search = GridSearchCV(LinearRegression(), param_grid, cv=5, scoring='neg_mean_squared_error')

# 执行网格搜索
grid_search.fit(X_train, y_train)

# 获取最佳模型
best_model = grid_search.best_estimator_

# 使用最佳模型预测
y_pred_best = best_model.predict(X_test)

# 评估最佳模型
mse_best = mean_squared_error(y_test, y_pred_best)
print(f'Best Mean Squared Error: {mse_best}')
AI 代码解读

模型部署

模型训练完成后,我们需要将其部署到生产环境中。这里我们将使用 Flask 构建一个简单的 Web 服务。

from flask import Flask, request, jsonify
import numpy as np

app = Flask(__name__)

# 加载模型
model = best_model

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    features = np.array(data['features']).reshape(1, -1)
    prediction = model.predict(features)
    return jsonify({
   'prediction': prediction.tolist()})

if __name__ == '__main__':
    app.run(debug=True)
AI 代码解读

测试部署的模型

最后,我们可以通过发送 HTTP 请求来测试部署的模型。

import requests

# 示例数据
test_data = {
   
    "features": [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
}

# 发送请求
response = requests.post('http://localhost:5000/predict', json=test_data)

# 打印预测结果
print(response.json())
AI 代码解读

通过上述步骤,我们完成了一个从数据预处理到模型部署的完整机器学习项目。每一步都遵循了最佳实践,确保了模型的性能和可靠性。希望本文提供的示例和讲解能够帮助读者更好地理解和应用机器学习项目中的关键技术。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
1
0
320
分享
相关文章
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
20 6
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
104 0
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
255 6
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
519 13
机器学习算法的优化与改进:提升模型性能的策略与方法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
74 14

热门文章

最新文章