《Python数据可视化编程实战》——5.4 在matplotlib中创建动画

简介:

本节书摘来自异步社区《Python数据可视化编程实战》一书中的第5章,第5.4节,作者[爱尔兰]Igor Milovanović ,颛青山 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

5.4 在matplotlib中创建动画

本节将学习如何让图表动起来。有时候,在解释当我们改变变量值时会发生什么情况的时候,动画有着更强的描述性。主要函数库的动画能力有限,但通常已足够了。接下来将解释如何使用它们。

5.4.1 准备工作

从1.1版本开始,一个动画框架被添加到了标准matplotlib库中,该框架主要的类是matplotlib.animation.Animation。这个类是一个基类,它可以针对不同的行为被子类化。实际上,该框架已经提供了几个类:TimedAnimation、ArtistAnimation和FuncAnimation。表5-1给出了这几个类的描述。


screenshot

为了能把动画存储到一个视频文件中,必须安装ffmpeg或者mencoder。这些包的安装根据我们所使用的操作系统的不同以及不同版本间的差别会有所不同,因此我们把它留给亲爱的读者去Google一下有效的相关信息。

5.4.2 操作步骤

下述代码演示了一些matplotlib动画。

import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation

fig = plt.figure()
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)

def init():
     """Clears current frame."""
     line.set_data([], [])
     return line,

def animate(i):
     """Draw figure.
     @param i: Frame counter
     @type i: int
     """
     x = np.linspace(0, 2, 1000)
     y = np.sin(2 * np.pi * (x - 0.01 * i)) * np.cos(22 * np.pi * (x - 0.01 * i))
     line.set_data(x, y)
     return line,

# This call puts the work in motion
# connecting init and animate functions and figure we want to draw
animator = animation.FuncAnimation(fig, animate, init_func=init, frames=200, interval=20, blit=True)

# This call creates the video file.
# Temporary, every frame is saved as PNG file
# and later processed by ffmpeg encoder into MPEG4 file
# we can pass various arguments to ffmpeg via extra_args
animator.save('basic_animation.mp4', fps=30,
                 extra_args=['-vcodec', 'libx264'],
                 writer='ffmpeg_file')
plt.show()

本代码将在执行该文件的文件夹中创建文件basic_animation.mp4,同时显示一个有动画的图形窗口。该视频文件可以用大多数支持MPEG-4格式的视频播放器打开。图形(帧)看上去如图5-4所示。


screenshot


screenshot

5.4.3 工作原理

上面例子中最重要的几个函数是init()、animate()和save()。首先,通过向FuncAnimate{![应为FuncAnimation。]}传入两个回调函数,init和animator。然后,调用它的save()方法保存视频文件。表5-2是关于每一个函数更多的细节内容。


screenshot

5.4.4 补充说明

matplotlib.animation.ArtistAnimation的用法和FuncAnimation不同,我们必须事先绘制出每一个artist,然后用所有artist的不同帧来实例化ArtistAnimation类。Artist动画是对matplotlib.animation.TimedAnimation类的一种封装,每N毫秒绘制一次帧,因此它支持基于时间的动画。

 不幸的是,对于Mac OS X的用户来说,动画框架在该平台上却让人很苦恼,有时候甚至不能工作。这在matplotlib未来的版本中会有所改进。
相关文章
|
2月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
44 1
|
2月前
|
数据可视化 JavaScript 前端开发
Matplotlib动画制作:让数据生动起来!
Matplotlib动画制作:让数据生动起来!
41 0
|
1天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
13 5
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
28 7
|
1月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
62 3
|
14天前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
18 0
|
2月前
|
API Python
30天拿下Python之matplotlib模块
30天拿下Python之matplotlib模块
12 0
|
2月前
|
数据可视化 数据处理 Python
Matplotlib:Python绘图利器之王
Matplotlib:Python绘图利器之王
16 0
|
2月前
|
机器学习/深度学习 开发工具 git
matplotlib各种案例总结(python经典编程案例)
该文章汇总了使用matplotlib绘制不同类型图表的方法和案例,包括条形图、折线图等,并展示了如何调整颜色和线条样式等属性。
20 0

热门文章

最新文章