《Python数据可视化编程实战》——1.9 为项目设置matplotlib参数

简介:

本节书摘来自异步社区《Python数据可视化编程实战》一书中的第1章,第1.9节,作者[爱尔兰]Igor Milovanović ,颛青山 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.9 为项目设置matplotlib参数

本节介绍matplotlib使用的各种配置文件的位置,以及使用这些配置文件的意义。同时还将介绍配置文件中的具体配置项。

1.9.1 准备工作

如果不想在每次使用matplotlib时都在代码开始部分进行配置(像前一节我们做的那样),就需要为不同的项目设定不同的默认配置项。本节将介绍如何做到这一点。这种配置方式使得配置项与代码分离,从而使代码更加整洁。此外,你可以很容易在同事间甚至项目间分享配置模板。

1.9.2 配置方法

假设一个项目对于matplotlib的特性参数总会设置相同的值,就没有必要在每次编写新的绘图代码时都进行相同的配置。取而代之的,应该是在代码之外,使用一个永久的文件设定matplotlib参数默认值。

通过matplotlibrc``来配置文件,matplotlib提供了对这种配置方式的支持。在matplotlibrc文件中包含了绝大部分可以变更的属性。

1.9.3 配置过程说明

配置文件可能存在于三个不同的位置,而它们的位置决定了它们的应用范围。这三个位置分别说明如下。

  • 当前工作目录:即代码运行的目录。在当前目录下,可以为目录所包含的当前项目代码定制matplotlib配置项。配置文件的文件名是matplotlibrc。
  • 用户级.matplotlib/matplotlibrc文件(Per user .matplotlib/matplotlibrc):通常是在用户的$HOME目录下(在Windows系统中,也就是Documents and Settings目录)。可以用matplotlib.get_configdir()命令来找到当前用户的配置文件目录。请参考随后的命令示例。
  • 安装*级配置文件(Per installation configuration file):*通常在python的site-packages目录下。这是系统级配置,不过在每次重新安装matplotlib后,配置文件会被覆盖。因此如果希望保持持久有效的配置,最好选择在用户级配置文件中进行设置。对于笔者来说,目前对本配置文件的最佳应用方式,是将其作为默认配置模板。如果在用户级配置文件已经比较混乱,或者需要为新项目做全新配置时,可以基于该配置文件进行设置。

在shell中运行下面的命令,即可打印出配置文件目录的位置:

$ python -c 'import matplotlib as mpl; print mpl.get_configdir()'

配置文件包括以下配置项。

  • axes:设置坐标轴边界和表面的颜色、坐标刻度值大小和网格的显示。
  • backend:设置目标输出TkAgg和GTKAgg。
  • figure:控制dpi、边界颜色、图形大小和子区(subplot)设置。
  • font:字体集(font family)、字体大小和样式设置。
  • grid:设置网格颜色和线型。
  • legend:设置图例和其中文本的显示。
  • line:设置线条(颜色、线型、宽度等)和标记。
  • patch:是填充2D空间的图形对象,如多边形和圆。控制线宽、颜色和抗锯齿设置等。
  • savefig:可以对保存的图形进行单独设置。例如,设置渲染的文件的背景为白色。
  • text:设置字体颜色、文本解析(纯文本或latex标记)等。
  • verbose:设置matplotlib在执行期间信息输出,如silent、helpful、debug和debug-annoying。
  • xticks和yticks:为x、y轴的主刻度和次刻度设置颜色、大小、方向,以及标签大小。

1.9.4 补充说明

如果你想了解前面提到的(和我们没有提到的)每个设置的详细信息,最好的方式是访问matplotlib项目的网站,那里提供了最新的API文档。如果需要获得进一步帮助,可以在用户和开发邮件组留言。本书最后还提供了一些有用的在线资源。

相关文章
|
14天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
57 19
|
10天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
17天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
47 5
|
22天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
46 5
|
26天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
47 7
|
25天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
22 5
|
26天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
31 4
|
27天前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
28 0
|
1月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
26 0
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。

热门文章

最新文章

下一篇
无影云桌面