Python opencv图像处理基础总结(七) 基于分水岭算法的图像分割

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 任何一副灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷。我们向每一个山谷中灌不同颜色的水。随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝。不停地灌水,不停地构建堤坝知道所有的山峰都被水淹没。我们构建好的堤坝就是对图像的分割

一、 原理


1. 分水岭算法原理


  • 任何一副灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷。我们向每一个山谷中灌不同颜色的水。随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝。不停地灌水,不停地构建堤坝知道所有的山峰都被水淹没。我们构建好的堤坝就是对图像的分割,这就是分水岭算法的背后原理。
  • OpenCV采用了基于掩模的分水岭算法,在这种算法中我们要设置那些山谷点会汇合,那些不会。这是一种交互式的图像分割,我们要做的就是给我们已知的对象打上不同的标签。如果某个区域肯定是前景或对象,就使用某个颜色(或灰度值)标签标记它。如果某个区域肯定不是对象而是背景就使用另外一个颜色标签标记。而剩下的不能确定是前景还是背景的区域就用 0 标记,这就是我们的标签。然后实施分水岭算法。每一次灌水,我们的标签就会被更新,当两个不同颜色的标签相遇时就构建堤坝,直到将所有山峰淹没,最后我们得到的边界对象(堤坝)的值为 -1。


2. 距离变换


  • 距离变换的基本含义是计算一个图像中非零像素点到最近的零像素点的距离,也就是到零像素点的最短距离。
  • 最常见的距离变换算法就是通过连续的腐蚀操作来实现,腐蚀操作的停止条件是所有前景像素都被完全。
  • 腐蚀。这样根据腐蚀的先后顺序,我们就得到各个前景像素点到前景中心骨架像素点的距离。
  • 根据各个像素点的距离值,设置为不同的灰度值。这样就完成了二值图像的距离变换。


3. opencv有关函数的用法


cv2.distanceTransform(src, distanceType, maskSize, dst=None, dstType=None)


  • src:输入二值图像
  • distanceType:计算距离的方式
  • maskSize:蒙板尺寸


cv2.connectedComponents(image, labels=None, connectivity=None, ltype=None)


  • image:输入8位单通道图像
  • labels:输出标签地图
  • connectivity:连通性,默认8,还可以取4。
  • Itype:输出标签类型 ,默认 CV_32S, 还可以取CV_16U。


cv2.watershed(image, markers)


  • image:输入图像
  • markers:标记


二、基于距离的分水岭分割流程



  • 输入图像,有噪声的话,先进行去噪。
  • 转成灰度图像
  • 二值化处理、形态学操作
  • 距离变换
  • 寻找种子、生成marker
  • 实施分水岭算法、输出分割后的图像


三、python代码实现


# -*- coding: UTF-8 -*-"""@公众号      : AI庭云君@Author     : 叶庭云@CSDN       : https://yetingyun.blog.csdn.net/"""importcv2ascvimportnumpyasnpdefwatershed_algorithm(image):
# 边缘保留滤波EPF  去噪blur=cv.pyrMeanShiftFiltering(image,sp=10,sr=100)
# 转成灰度图像gray=cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
# 得到二值图像   自适应阈值ret, binary=cv.threshold(gray, 0, 255, cv.THRESH_BINARY|cv.THRESH_OTSU)
cv.imshow('binary image', binary)
# 形态学操作   获取结构元素  开操作kernel=cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
opening=cv.morphologyEx(binary, cv.MORPH_OPEN, kernel=kernel, iterations=2)
# 确定区域sure_bg=cv.dilate(opening, kernel, iterations=3)
# cv.imshow('mor-opt', sure_bg)# 距离变换dist=cv.distanceTransform(opening, cv.DIST_L2, 3)
dist_out=cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX)
# cv.imshow('distance-', dist_out * 50)ret, surface=cv.threshold(dist_out, dist_out.max() *0.6, 255, cv.THRESH_BINARY)
# cv.imshow('surface-markers', surface)surface_fg=np.uint8(surface)    # 转成8位整型unkonown=cv.subtract(sure_bg, surface_fg)        # 找到位置区域# Marker labellingret, markers=cv.connectedComponents(surface_fg)  # 连通区域print(ret)
# 分水岭变换# Add one to all labels so that sure background is not 0, but 1markers=markers+1# Now, mark the region of unknown with zeromarkers[unkonown==255] =0# 实施分水岭算法了。标签图像将会被修改,边界区域的标记将变为 -1markers=cv.watershed(image, markers=markers)
image[markers==-1] = [0, 0, 255]      # 被标记的区域   设为红色cv.imshow('result', image)
src=cv.imread(r'./test/042.png')
src=cv.resize(src, None, fx=0.5, fy=0.5)
cv.imshow('input image', src)
watershed_algorithm(src)
cv.waitKey(0)
cv.destroyAllWindows()


运行效果如下:








目录
相关文章
|
14天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
101 63
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
58 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
72 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
64 4
|
5月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
129 1
|
6月前
|
存储 机器学习/深度学习 算法
Python算法基础教程
Python算法基础教程
34 0
|
数据采集 SQL 算法
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!
222 0
C++、Python、数据结构与算法、计算机基础、数据库教程汇总!

热门文章

最新文章