Python pyecharts Line折线图

简介: Python pyecharts Line折线图

一、绘制折线图



import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
from datetime import datetime
plt.figure(figsize=(16,10))
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.charts import Bar
import os
from pyecharts.options.global_options import ThemeType
# 读入数据
cnbodfgbsort=pd.read_csv("cnbodfgbsort.csv")

得到的cnbodfgbsort数据:

7fa3f9df25344166a04fe8a10a50154e.png


import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist()) #X轴
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist()) #Y轴
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist()) #Y轴
    .set_global_opts(title_opts=opts.TitleOpts(title="电影票价与人次")) #标题
)
c.render_notebook() # 显示

5ad52b493f444dccb7a3770e88231b2e.png


二、添加最小值最大值平均值



import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist())
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist())
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist(), markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
            ]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="average", name="平均值")]
        ),)
    .set_global_opts(title_opts=opts.TitleOpts(title="电影票价与人次"))
)
c.render_notebook()

61bbb3173d9147ebbe13c96b39726162.png3ec6024454cc4a659c8215c1726c0b4f.png


三、竖线提示信息



tooltip_opts=opts.TooltipOpts(trigger="axis")

f8b1154029bb482992de94f787b612af.png

8ef5dd27463f4002afeeee5d3ba20cb9.gif


四、显示工具栏



toolbox_opts=opts.ToolboxOpts(is_show=True)

51065730e85d4e5d948bab105b881ae3.png500b469be87f4fea89f2a93ad0dc63ec.png


五、实心面积填充



.set_series_opts(
     areastyle_opts=opts.AreaStyleOpts(opacity=0.5), # 透明度
     label_opts=opts.LabelOpts(is_show=False), # 是否显示标签
 )

36bcda603acf4ff9abeece4ceea77cd7.png


六、是否跳过空值



import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))
    .render("line_connect_null.html")
)

如下图:y[3],y[5]数据都是空值,如果直接显示的话,图表会出错

0795a6eec00e4a04afe7b3cf7b569148.png

bd668e1d65cd49ac8b2aceefb5c5af3e.png

# 使用这个参数来跳过空值,避免折现断掉
is_connect_nones=True
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))
)
c.render_notebook()

4f0035ba218440bc891ecf1b34c1fcf0.png


七、折线光滑化



is_smooth=True

c505605c2e7b4caea7bf289a4b4fcfcf.png

b2f127fe229b448ebc5085cf32a8bcfe.png


八、多X轴



参考官网:》multiple_x_axes

70fca735be864fb79a489ddeec3da1b0.gif


九、阶梯图



is_step=True

10b506b4456344e2a526016b8818d843.png553c7676772c406695b8c74a994e6eb6.png


相关文章
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
41 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
4月前
|
IDE 开发工具 Python
【Python】已完美解决:SyntaxError: Non-UTF-8 code starting with ‘æ‘ in file E:/Python/3.py on line 4, but no
【Python】已完美解决:SyntaxError: Non-UTF-8 code starting with ‘æ‘ in file E:/Python/3.py on line 4, but no
145 0
|
2月前
|
JSON 数据可视化 数据处理
Python数据可视化-折线图可视化
Python数据可视化-折线图可视化
|
1月前
|
数据采集 监控 数据可视化
用Python构建动态折线图:实时展示爬取数据的指南
本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。
|
2月前
|
Python
pyecharts:一款python画图神器
pyecharts:一款python画图神器
39 0
|
2月前
|
数据可视化 搜索推荐 JavaScript
pyecharts模块的几个经典案例(python经典编程案例)
文章提供了多个使用pyecharts模块创建数据可视化的Python编程案例,展示如何生成各种类型的图表并进行定制化设置。
42 0
|
3月前
|
数据采集 数据可视化 数据挖掘
【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】
【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】
|
3月前
|
数据可视化 算法 前端开发
基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则
本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。
126 2
|
3月前
|
数据可视化 Python
Python 绘制误码率对比折线图,纵坐标是10次幂,即求对数
本文介绍了如何在Python中绘制误码率(BER)的对比折线图,特别指出纵坐标使用10次幂即对数形式来表示误码率,横坐标为信噪比(SNR),并提供了相应的绘图函数和使用示例。
41 2
|
3月前
|
前端开发 数据可视化 JavaScript
【揭秘神器】如何用Pyecharts轻松召唤出Echarts?只需几行Python代码,让你的数据瞬间生动起来!
【8月更文挑战第21天】Pyecharts是一款基于Python的图表生成库,利用Echarts强大的JavaScript可视化能力,让开发者无需编写前端代码即可在Python环境中创建美观图表。本文通过实例演示如何安装Pyecharts并生成一个展示城市气温分布的柱状图,包括基本图表生成及自定义样式设置,如颜色调整、图例显示等,最终将图表嵌入HTML文件展示,适合各水平开发者快速掌握数据可视化技能。
50 0