pyecharts模块的几个经典案例(python经典编程案例)

简介: 文章提供了多个使用pyecharts模块创建数据可视化的Python编程案例,展示如何生成各种类型的图表并进行定制化设置。

一. pyecharts概述

pyecharts是基于ECharts图表库开发的python第三方模块。
ECharts是一个纯JavaScript的商业级图表库,兼容当前绝大部分浏览器,能够创建类型丰富,精美生动,可交互,可高度个性化定制的数据可视化效果。
安装:pip3 install pyecharts

二. 案例

2.1 图表配置项

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType

x = ['连衣裙', '短裤', '运动套装', '牛仔裤', '针织衫', '半身裙', '衬衫', '阔腿裤', '打底裤']
y1 = [36, 56, 60, 78, 90, 20, 50, 70, 10]
y2 = [16, 30, 50, 90, 45, 10, 60, 54, 40]
chart = Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
chart.add_xaxis(x)
chart.add_yaxis('分店A', y1)
chart.add_yaxis('分店B', y2)
chart.set_global_opts(title_opts=opts.TitleOpts(title='产品销售额对比图', pos_left='left'),
                      yaxis_opts=opts.AxisOpts(name='销售业绩(元)', name_location='end'),
                      xaxis_opts=opts.AxisOpts(name='产品', name_location='end'),
                      tooltip_opts=opts.TooltipOpts(is_show=True, formatter='{a}<br/>{b}:{c}', background_color='black', border_width=15),
                      legend_opts=opts.LegendOpts(is_show=False),
                      toolbox_opts=opts.ToolboxOpts(is_show=True, orient='horizontal'),
                      visualmap_opts=opts.VisualMapOpts(is_show=True, type_='color', min_=0, max_=100, orient='vertical'),
                      datazoom_opts=opts.DataZoomOpts(is_show=True, type_='slider'))
chart.render('图表配置项.html')

2.2 绘制漏斗图

import pyecharts.options as opts
from pyecharts.charts import Funnel
x = ['浏览商品', '放入购物车', '生成订单', '支付订单', '完成交易']
y = [1000, 900, 400, 360, 320]
data = [i for i in zip(x, y)]
chart = Funnel()
chart.add(series_name='人数', data_pair=data, label_opts=opts.LabelOpts(is_show=True, position='inside'), tooltip_opts=opts.TooltipOpts(trigger='item', formatter='{a}:{c}'))
chart.set_global_opts(title_opts=opts.TitleOpts(title='电商网站流量转化漏斗图', pos_left='center'), legend_opts=opts.LegendOpts(is_show=False))
chart.render('漏斗图.html')

import pyecharts.options as opts
from pyecharts.charts import Funnel
x = ['浏览商品', '放入购物车', '生成订单', '支付订单', '完成交易']
y = [1000, 900, 400, 360, 320]
data = [i for i in zip(x, y)]
chart = Funnel()
chart.add(series_name='人数', data_pair=data, sort_='ascending', gap=15, label_opts=opts.LabelOpts(is_show=True, position='inside'), tooltip_opts=opts.TooltipOpts(trigger='item', formatter='{a}:{c}'))
chart.set_global_opts(title_opts=opts.TitleOpts(title='电商网站流量转化漏斗图', pos_left='center'), legend_opts=opts.LegendOpts(is_show=False))
chart.render('漏斗图.html')

2.3 绘制涟漪特效散点图

import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import EffectScatter
data = pd.read_excel('客户购买力统计表.xlsx')
x = data['年龄'].tolist()
y = data['消费金额(元)'].tolist()
chart = EffectScatter()
chart.add_xaxis(x)
chart.add_yaxis(series_name='年龄,消费金额(元)', y_axis=y,
                label_opts=opts.LabelOpts(is_show=False),
                symbol_size=15)
chart.set_global_opts(title_opts=opts.TitleOpts(title='客户购买力散点图'),
                      yaxis_opts=opts.AxisOpts(type_='value', name='消费金额(元)', name_location='middle', name_gap=40),
                      xaxis_opts=opts.AxisOpts(type_='value', name='年龄', name_location='middle', name_gap=40),
                      tooltip_opts=opts.TooltipOpts(trigger='item', formatter='{a}:{c}'))
chart.render('涟漪特效散点图.html')

2.4 绘制水球图


import pyecharts.options as opts
from pyecharts.charts import Liquid
a = 68
t = 100
chart = Liquid()
chart.add(series_name = '商品A', data = [a / t])
chart.set_global_opts(title_opts = opts.TitleOpts(title = '产品销售业绩达成率', pos_left = 'center'))
chart.render('水球图.html')

import pyecharts.options as opts
from pyecharts.charts import Liquid
a = 68
t = 100
chart = Liquid()
chart.add(series_name = '商品A', data = [a / t], shape = 'rect')
chart.set_global_opts(title_opts = opts.TitleOpts(title = '产品销售业绩达成率', pos_left = 'center'))
chart.render('水球图.html')

import pyecharts.options as opts
from pyecharts.charts import Liquid
a1 = 68
a2 = 120
a3 = 37
t = 100
chart = Liquid()
chart.set_global_opts(title_opts=opts.TitleOpts(title='产品销售业绩达成率', pos_left='center'))
chart.add(series_name='商品A', data=[a1 / t], center=['20%', '50%'])
chart.add(series_name='商品B', data=[a2 / t], center=['50%', '50%'])
chart.add(series_name='商品C', data=[a3 / t], center=['80%', '50%'])
chart.render('水球图.html')

2.5 绘制仪表盘

import pyecharts.options as opts
from pyecharts.charts import Gauge
chart = Gauge()
chart.add(series_name = '业务指标', data_pair = [('完成率', '62.25')], split_number = 10, radius = '80%', title_label_opts = opts.LabelOpts(font_size = 30, color = 'red', font_family = 'Microsoft YaHei'))
chart.set_global_opts(legend_opts = opts.LegendOpts(is_show = False), tooltip_opts = opts.TooltipOpts(is_show = True, formatter = '{a}<br/>{b}:{c}%'))
chart.render('仪表盘.html')

2.6 绘制词云图

import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import WordCloud
data = pd.read_excel('电影票房统计.xlsx')
name = data['电影名称']
value = data['总票房(亿元)']
data1 = [z for z in zip(name, value)]
chart = WordCloud()
chart.add('总票房(亿元)', data_pair = data1, word_size_range = [6, 66])
chart.set_global_opts(title_opts=opts.TitleOpts(title = '电影票房分析', title_textstyle_opts = opts.TextStyleOpts(font_size = 30)), tooltip_opts = opts.TooltipOpts(is_show = True))
chart.render('词云图.html')

import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import WordCloud
data = pd.read_excel('电影票房统计.xlsx')
name = data['电影名称']
value = data['总票房(亿元)']
data1 = [z for z in zip(name, value)]
chart = WordCloud()
chart.add('总票房(亿元)', data_pair = data1, shape = 'star', word_size_range = [6, 66])
chart.set_global_opts(title_opts=opts.TitleOpts(title = '电影票房分析', title_textstyle_opts = opts.TextStyleOpts(font_size = 30)), tooltip_opts = opts.TooltipOpts(is_show = True))
chart.render('词云图.html')

2.7 绘制K线图

import tushare as ts
data = ts.get_k_data('000005', start = '2010-01-01', end = '2020-01-01')
print(data.head())
data.to_excel('股价数据.xlsx', index = False)
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Kline
data = pd.read_excel('股价数据.xlsx')
x = list(data['date'])
open = data['open']
close = data['close']
lowest = data['low']
highest = data['high']
y = [list(z) for z in zip(open, close, lowest, highest)]
chart = Kline()
chart.add_xaxis(x)
chart.add_yaxis('股价', y)
chart.set_global_opts(xaxis_opts = opts.AxisOpts(is_scale = True),
                      yaxis_opts = opts.AxisOpts(is_scale = True,
                                                 splitarea_opts = opts.SplitAreaOpts(is_show = True,
                                                                                     areastyle_opts = opts.AreaStyleOpts(opacity = 1))),
                      datazoom_opts = [opts.DataZoomOpts(type_ = 'inside')],
                      title_opts = opts.TitleOpts(title = '股价走势图'))
chart.render('K线图.html')
相关文章
|
2月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
378 7
|
2月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
269 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
316 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
344 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
274 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
206 82
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
268 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
211 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
479 3
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例

推荐镜像

更多