【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】

简介: 【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】

一、设计要求

该项目通过读取葡萄酒数据文件,进行数据分析和可视化,展示不同国家、评分和价格的葡萄酒分布情况。主要功能包括数据读取与展示、数据筛选与保存、以及数据可视化。

功能点1:数据读取与展示

  • 读取CSV文件
  • 使用csv模块读取winemag-data.csv文件。
  • 使用pandas模块读取winemag-data.csv文件。
  • 显示特定行数据
  • 使用csv模块显示前15行、第20行到第25行、倒序输出最后10行的数据。
  • 使用pandas模块显示前15行、第20行到第25行、倒序输出最后10行的数据。
  • 数据描述
  • 使用pandas模块显示数据文件的信息(info方法)和描述性统计(describe方法)。
  • 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

功能点2:数据筛选与保存

  • 筛选US原产地葡萄酒数据
  • 从数据中筛选出原产地为US的葡萄酒,并选择显示其描述、评分和价格字段。
  • 保存筛选结果
  • 将筛选出的US葡萄酒数据保存到新的CSV文件us_wines.csv中。

功能点3:数据可视化

  • 柱状图:不同国家的葡萄酒数量
  • 创建柱状图显示不同国家的葡萄酒数量,设置标题为“不同国家的葡萄酒数量”。
  • 箱线图:葡萄酒评分随价格的分布
  • 创建箱线图显示葡萄酒评分随价格的分布,设置标题为“葡萄酒评分随价格的分布”。
  • 饼状图:不同评分类别的葡萄酒占比
  • 创建饼状图显示不同评分(低评分:80-84,中评分:85-89,高评分:90-100)类别的葡萄酒占比,设置标题为“不同评分类别的葡萄酒占比”。
  • 散点图:价格与评分关系
  • 创建散点图显示葡萄酒价格与评分的关系,设置标题为“价格与评分关系”。
  • 环状图:五个国家的葡萄酒数量
  • 创建环状图显示五个国家的葡萄酒数量,设置标题为“五个国家的葡萄酒数量”。
  • 玫瑰图:八个省份的葡萄酒数量
  • 创建玫瑰图显示八个省份的葡萄酒数量,设置标题为“八个省份的葡萄酒数量”。


二、设计思路

好的,结合上述代码,我们可以从数据读取、数据清洗和数据处理三个方面详细讲解代码的设计思路和实现过程。

1. 数据读取

数据读取是数据分析的第一步,代码中通过两种方式读取 CSV 文件的数据:使用 csv 模块和 pandas 库。

使用 csv 模块读取数据
import csv

filename = 'winemag-data.csv'
with open(filename, newline='', encoding='utf-8') as csvfile:
    reader = csv.reader(csvfile)
    data = list(reader)

# 显示前15行数据
print("前15行数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


# 显示第20行到第25行的数据
print("\n第20行到第25行的数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


# 倒序输出最后10行的数据
print("\n倒序输出最后10行的数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

  • 读取文件:使用 open 函数打开 CSV 文件,并使用 csv.reader 读取文件内容。
  • 转换为列表:将读取到的数据转换为列表,方便后续操作。
  • 显示特定行:通过列表切片操作显示特定行的数据,包括前15行、第20行到第25行,以及倒序的最后10行。
使用 pandas 库读取数据
import pandas as pd

# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


# 显示前15行数据
print("\n前15行数据:")
print(df.head(15))

# 显示第20行到第25行的数据
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


# 倒序输出最后10行的数据
print("\n倒序输出最后10行的数据:")
print(df.tail(10)[::-1])
  • 读取文件:使用 pandas.read_csv 读取 CSV 文件,返回一个 DataFrame 对象。
  • 显示数据信息和描述性统计:使用 df.info()df.describe() 分别显示数据的基本信息和描述性统计。
  • 显示特定行:通过 df.head()df.iloc[]df.tail()[::-1] 显示前15行、第20行到第25行以及倒序的最后10行数据。

2. 数据清洗

数据清洗是数据处理的重要一步,目的是确保数据的完整性和质量,去除或修正缺失、错误或不一致的数据。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

删除缺失值
df = df.dropna(subset=['points', 'price'])
  • 删除缺失值:使用 pandas 提供的 dropna 方法,删除 pointsprice 列中包含缺失值的行,确保数据的完整性。

3. 数据处理

数据处理包括对数据的筛选、转换和保存等操作,以便后续的分析和可视化。

筛选特定数据并保存
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈
us_wines.to_csv('us_wines.csv', index=False)

print("\n筛选出的US葡萄酒数据已保存到us_wines.csv文件中")
  • 筛选数据:使用布尔索引筛选出原产地为 US 的葡萄酒,并选择 descriptionpointsprice 列。
  • 保存数据:将筛选后的数据保存到新的 CSV 文件 us_wines.csv 中,便于后续使用。

总结

整个代码从数据读取、数据清洗到数据处理,循序渐进地对葡萄酒数据进行全面的操作:

  1. 数据读取:通过 csv 模块和 pandas 库读取数据,了解数据的基本结构和内容。
  2. 数据清洗:删除 pointsprice 列中包含缺失值的行,确保数据完整性。
  3. 数据处理:筛选出特定条件下的数据并保存,为后续分析和可视化做好准备。

通过这些步骤,能够有效地对葡萄酒数据进行清洗和处理,确保数据质量并为进一步的分析奠定基础。


三、可视化分析

使用了 Pyecharts 库对葡萄酒数据进行了多种类型的可视化展示,以便从多个角度全面了解数据的特征和趋势。Pyecharts 是一个基于 Python 的数据可视化库,能够生成丰富多样的图表,包括柱状图、箱线图、饼状图、散点图、环状图和玫瑰图。

不同国家的葡萄酒数量分布

柱状图用于展示不同国家的葡萄酒数量分布。通过统计每个国家的葡萄酒数量,并在图表中以柱状形式展示,可以直观了解各个国家在葡萄酒生产中的份额。这种展示方式清晰明了,有助于快速识别出主要的葡萄酒生产国,为市场份额分析提供基础数据。

bar = (
    Bar()
    .add_xaxis(df['country'].value_counts().index.tolist())
    .add_yaxis("数量", df['country'].value_counts().tolist())
    .set_global_opts(title_opts=opts.TitleOpts(title="不同国家的葡萄酒数量"))
)

葡萄酒评分随价格的分布情况

箱线图用于展示葡萄酒评分随价格的分布情况。通过箱线图,可以观察到数据的分布情况、中位数、四分位数以及异常值。这种图表有助于揭示价格与评分之间的潜在关系,帮助消费者和生产者理解价格对评分的影响,从而优化定价策略和质量管理。

boxplot = Boxplot()
boxplot.add_xaxis(["价格"])
boxplot.add_yaxis("评分", boxplot.prepare_data([df['points'].tolist()]))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="葡萄酒评分随价格的分布"))

不同评分等级的葡萄酒占比

饼状图将评分分为三类:低评分(80-84)、中评分(85-89)和高评分(90-100),并展示各类评分的葡萄酒占比。通过这种分类展示,用户可以清晰了解不同评分等级的葡萄酒在数据集中所占的比例,有助于了解市场对不同评分葡萄酒的需求和接受度。

.👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

bins = [80, 84, 89, 100]
labels = ['低评分 (80-84)', '中评分 (85-89)', '高评分 (90-100)']
df['rating_category'] = pd.cut(df['points'], bins=bins, labels=labels, right=False)
rating_counts = df['rating_category'].value_counts()
pie = (
    Pie()
    # 略.....
    # 略.....
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", position="outside"))
)

价格和评分关系

散点图展示了价格与评分的关系。通过在散点图中展示价格和评分的具体数据点,可以观察到价格与评分之间的分布趋势和聚集情况。这种图表有助于进一步验证价格是否在一定程度上反映了葡萄酒的评分,为消费者选购葡萄酒提供参考。

scatter = (
    Scatter()
    # 略.....
    # 略.....
    .set_global_opts(title_opts=opts.TitleOpts(title="价格与评分关系"))
)![

国家葡萄酒数量进行分析

环状图选择了前五个国家的葡萄酒数量进行分析。通过对主要葡萄酒生产国的数据进行环状图展示,用户可以直观了解这些国家的市场份额和竞争情况,为国际市场战略制定提供数据支持。

top_countries = df['country'].value_counts().nlargest(5)
ring = (
    Pie()
    # 略.....
    # 略.....
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", position="outside"))
)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈




八个省份的葡萄酒数量

玫瑰图分析了前八个省份的葡萄酒数量。通过选取葡萄酒数量最多的八个省份,并在玫瑰图中进行展示,用户可以直观了解这些省份在葡萄酒生产中的重要地位。这种分析有助于揭示主要葡萄酒生产区域的分布情况,为区域市场分析和策略制定提供参考。


八个省份的葡萄酒数量

玫瑰图分析了前八个省份的葡萄酒数量。通过选取葡萄酒数量最多的八个省份,并在玫瑰图中进行展示,用户可以直观了解这些省份在葡萄酒生产中的重要地位。这种分析有助于揭示主要葡萄酒生产区域的分布情况,为区域市场分析和策略制定提供参考。

top_provinces = df['province'].value_counts().nlargest(8)
rose = (
    Pie()
    .add("", [list(z) for z in zip(top_provinces.index.tolist(), top_provinces.tolist())], radius=["30%", "75%"], rosetype="radius")
    # 略.....
    # 略.....
)


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

相关文章
|
22天前
|
Ubuntu Linux 数据安全/隐私保护
使用Cython库包对python的py文件(源码)进行加密,把python的.py文件生成.so文件并调用
本文介绍了在Linux系统(Ubuntu 18.04)下将Python源代码(`.py文件`)加密为`.so文件`的方法。首先安装必要的工具如`python3-dev`、`gcc`和`Cython`。然后通过`setup.py`脚本使用Cython将`.py文件`转化为`.so文件`,从而实现源代码的加密保护。文中详细描述了从编写源代码到生成及调用`.so文件`的具体步骤。此方法相较于转化为`.pyc文件`提供了更高的安全性。
32 2
|
29天前
|
测试技术 Python
python自动化测试中装饰器@ddt与@data源码深入解析
综上所述,使用 `@ddt`和 `@data`可以大大简化写作测试用例的过程,让我们能专注于测试逻辑的本身,而无需编写重复的测试方法。通过讲解了 `@ddt`和 `@data`源码的关键部分,我们可以更深入地理解其背后的工作原理。
24 1
|
23天前
|
算法 关系型数据库 程序员
程序员必备技能)基于Python的鼠标与键盘控制实战扩展与源码
这篇文章是关于如何使用Python的`pyautogui`库来控制鼠标和键盘进行各种操作,包括移动、点击、滚轮控制以及键盘的按键和快捷键输出,并介绍了如何结合图像处理和计算机视觉技术来扩展其应用。
|
数据采集 人工智能 算法
Python学习十大公开免费数据集介绍
很多行友说,想做项目学习和练手没有数据怎么办。又想给行哥投稿赚钱,没有数据拿头分析啊。先别急,这里行哥给大家推荐一些数据来源,足够你去好好分析数据,这些数据用来学习和找工作都不是问题
1027 0
Python学习十大公开免费数据集介绍
|
5天前
|
Python
Python编程中的异常处理:理解与实践
【9月更文挑战第14天】在编码的世界里,错误是不可避免的。它们就像路上的绊脚石,让我们的程序跌跌撞撞。但是,如果我们能够预见并优雅地处理这些错误,我们的程序就能像芭蕾舞者一样,即使在跌倒的边缘,也能轻盈地起舞。本文将带你深入了解Python中的异常处理机制,让你的代码在面对意外时,依然能保持优雅和从容。
140 73
|
5天前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从零基础到实战应用
【9月更文挑战第15天】本文将引导读者从零开始学习Python编程,通过简单易懂的语言和实例,帮助初学者掌握Python的基本语法和常用库,最终实现一个简单的实战项目。文章结构清晰,分为基础知识、进阶技巧和实战应用三个部分,逐步深入,让读者在学习过程中不断积累经验,提高编程能力。
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索Python的奥秘:从基础到进阶的编程之旅
在这篇文章中,我们将深入探讨Python编程的基础知识和进阶技巧。通过清晰的解释和实用的示例,无论您是编程新手还是有经验的开发者,都能从中获得有价值的见解。我们将覆盖从变量、数据类型到类和对象的各个方面,助您在编程世界里游刃有余。
23 10
|
1天前
|
人工智能 数据挖掘 开发者
Python编程入门:从基础到实战
【9月更文挑战第18天】本文将带你走进Python的世界,从最基本的语法开始,逐步深入到实际的项目应用。无论你是编程新手,还是有一定基础的开发者,都能在这篇文章中找到你需要的内容。我们将通过详细的代码示例和清晰的解释,让你轻松掌握Python编程。
15 5
|
3天前
|
存储 机器学习/深度学习 数据挖掘
深入浅出:Python编程入门与实践
【9月更文挑战第16天】本文以“深入浅出”的方式,引领读者步入Python编程的世界。从基础语法到实际应用,我们将一步步探索Python的魅力所在。无论你是编程新手,还是希望拓展技能的老手,这篇文章都将为你提供有价值的信息和指导。通过本文的学习,你将能够编写出简单而实用的Python程序,为进一步深入学习打下坚实的基础。让我们一起开始这段编程之旅吧!