图神经网络22-DGL实战:针对边分类任务的邻居采样训练方法

简介: 图神经网络22-DGL实战:针对边分类任务的邻居采样训练方法

边分类/回归的训练与节点分类/回归的训练类似,但还是有一些明显的区别。


定义邻居采样器和数据加载器


用户可以使用和节点分类一样的邻居采样器 。

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)


想要用DGL提供的邻居采样器做边分类,需要将其与

:class:~dgl.dataloading.pytorch.EdgeDataLoader 结合使用。

:class:~dgl.dataloading.pytorch.EdgeDataLoader 以小批次的形式对一组边进行迭代,

从而产生包含边小批次的子图以及供下文中模块使用的

例如,以下代码创建了一个PyTorch数据加载器,该PyTorch数据加载器以批的形式迭代训练边ID的数组

train_eids,并将生成的块列表放到GPU上。

dataloader = dgl.dataloading.EdgeDataLoader(
        g, train_eid_dict, sampler,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=4)


有关DGL的内置采样器的完整列表,用户可以参考neighborhood sampler API reference <api-dataloading-neighbor-sampling>

如果用户希望开发自己的邻居采样器,或者想要对块的概念有更详细的了解,请参考guide_cn-minibatch-customizing-neighborhood-sampler


小批次邻居采样训练时删边


用户在训练边分类模型时,有时希望从计算依赖中删除出现在训练数据中的边,就好像这些边根本不存在一样。

否则,模型将 "知道" 两个节点之间存在边的联系,并有可能利用这点 "作弊" 。

因此,在基于邻居采样的边分类中,用户有时会希望从采样得到的小批次图中删去部分边及其对应的反向边。

用户可以在实例化

:class:~dgl.dataloading.pytorch.EdgeDataLoader

时设置 exclude='reverse_id',同时将边ID映射到其反向边ID。

通常这样做会导致采样过程变慢很多,这是因为DGL要定位并删除包含在小批次中的反向边。

n_edges = g.number_of_edges()
    dataloader = dgl.dataloading.EdgeDataLoader(
        g, train_eid_dict, sampler,
        # 下面的两个参数专门用于在邻居采样时删除小批次的一些边和它们的反向边
        exclude='reverse_id',
        reverse_eids=torch.cat([
            torch.arange(n_edges // 2, n_edges), torch.arange(0, n_edges // 2)]),
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=4)


调整模型以适用小批次训练


边分类模型通常由两部分组成:

  • 获取边两端节点的表示。
  • 用边两端节点表示为每个类别打分。

第一部分与

:ref:随机批次训练节点分类 <guide_cn-minibatch-node-classification-model>

完全相同,用户可以简单地复用它。输入仍然是DGL的数据加载器生成的块列表和输入特征。

class StochasticTwoLayerGCN(nn.Module):
        def __init__(self, in_features, hidden_features, out_features):
            super().__init__()
            self.conv1 = dglnn.GraphConv(in_features, hidden_features)
            self.conv2 = dglnn.GraphConv(hidden_features, out_features)
        def forward(self, blocks, x):
            x = F.relu(self.conv1(blocks[0], x))
            x = F.relu(self.conv2(blocks[1], x))
            return x


第二部分的输入通常是前一部分的输出,以及由小批次边导出的原始图的子图。

子图是从相同的数据加载器产生的。用户可以调用 :meth:dgl.DGLHeteroGraph.apply_edges 计算边子图中边的得分。

以下代码片段实现了通过合并边两端节点的特征并将其映射到全连接层来预测边的得分。

class ScorePredictor(nn.Module):
        def __init__(self, num_classes, in_features):
            super().__init__()
            self.W = nn.Linear(2 * in_features, num_classes)
        def apply_edges(self, edges):
            data = torch.cat([edges.src['x'], edges.dst['x']])
            return {'score': self.W(data)}
        def forward(self, edge_subgraph, x):
            with edge_subgraph.local_scope():
                edge_subgraph.ndata['x'] = x
                edge_subgraph.apply_edges(self.apply_edges)
                return edge_subgraph.edata['score']


模型接受数据加载器生成的块列表、边子图以及输入节点特征进行前向传播,如下所示:

class Model(nn.Module):
        def __init__(self, in_features, hidden_features, out_features, num_classes):
            super().__init__()
            self.gcn = StochasticTwoLayerGCN(
                in_features, hidden_features, out_features)
            self.predictor = ScorePredictor(num_classes, out_features)
        def forward(self, edge_subgraph, blocks, x):
            x = self.gcn(blocks, x)
            return self.predictor(edge_subgraph, x)


DGL保证边子图中的节点与生成的块列表中最后一个块的输出节点相同。


模型的训练


模型的训练与节点分类的随机批次训练的情况非常相似。用户可以遍历数据加载器以获得由小批次边组成的子图,


以及计算其两端节点表示所需的块列表。

model = Model(in_features, hidden_features, out_features, num_classes)
    model = model.cuda()
    opt = torch.optim.Adam(model.parameters())
    for input_nodes, edge_subgraph, blocks in dataloader:
        blocks = [b.to(torch.device('cuda')) for b in blocks]
        edge_subgraph = edge_subgraph.to(torch.device('cuda'))
        input_features = blocks[0].srcdata['features']
        edge_labels = edge_subgraph.edata['labels']
        edge_predictions = model(edge_subgraph, blocks, input_features)
        loss = compute_loss(edge_labels, edge_predictions)
        opt.zero_grad()
        loss.backward()
        opt.step()


异构图上的模型训练


在异构图上,计算节点表示的模型也可以用于计算边分类/回归所需的两端节点的表示。

class StochasticTwoLayerRGCN(nn.Module):
        def __init__(self, in_feat, hidden_feat, out_feat, rel_names):
            super().__init__()
            self.conv1 = dglnn.HeteroGraphConv({
                    rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right')
                    for rel in rel_names
                })
            self.conv2 = dglnn.HeteroGraphConv({
                    rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right')
                    for rel in rel_names
                })
        def forward(self, blocks, x):
            x = self.conv1(blocks[0], x)
            x = self.conv2(blocks[1], x)
            return x


在同构图和异构图上做评分预测时,代码实现的唯一不同在于调用

:meth:~dgl.DGLHeteroGraph.apply_edges

时需要在特定类型的边上进行迭代。

class ScorePredictor(nn.Module):
        def __init__(self, num_classes, in_features):
            super().__init__()
            self.W = nn.Linear(2 * in_features, num_classes)
        def apply_edges(self, edges):
            data = torch.cat([edges.src['x'], edges.dst['x']])
            return {'score': self.W(data)}
        def forward(self, edge_subgraph, x):
            with edge_subgraph.local_scope():
                edge_subgraph.ndata['x'] = x
                for etype in edge_subgraph.canonical_etypes:
                    edge_subgraph.apply_edges(self.apply_edges, etype=etype)
                return edge_subgraph.edata['score']
    class Model(nn.Module):
        def __init__(self, in_features, hidden_features, out_features, num_classes,
                     etypes):
            super().__init__()
            self.rgcn = StochasticTwoLayerRGCN(
                in_features, hidden_features, out_features, etypes)
            self.pred = ScorePredictor(num_classes, out_features)
        def forward(self, edge_subgraph, blocks, x):
            x = self.rgcn(blocks, x)
            return self.pred(edge_subgraph, x)


数据加载器的定义也与节点分类的非常相似。唯一的区别是用户需要使用

~dgl.dataloading.pytorch.EdgeDataLoader而不是~dgl.dataloading.pytorch.NodeDataLoader

并且提供边类型和边ID张量的字典,而不是节点类型和节点ID张量的字典。

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
    dataloader = dgl.dataloading.EdgeDataLoader(
        g, train_eid_dict, sampler,
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=4)


如果用户希望删除异构图中的反向边,情况会有所不同。在异构图上,

反向边通常具有与正向边本身不同的边类型,以便区分 向前向后 关系。

例如,关注被关注 是一对相反的关系, 购买被买下 也是一对相反的关系。

如果一个类型中的每个边都有一个与之对应的ID相同、属于另一类型的反向边,

则用户可以指定边类型及其反向边类型之间的映射。删除小批次中的边及其反向边的方法如下。

dataloader = dgl.dataloading.EdgeDataLoader(
        g, train_eid_dict, sampler,
        # 下面的两个参数专门用于在邻居采样时删除小批次的一些边和它们的反向边
        exclude='reverse_types',
        reverse_etypes={'follow': 'followed by', 'followed by': 'follow',
                        'purchase': 'purchased by', 'purchased by': 'purchase'}
        batch_size=1024,
        shuffle=True,
        drop_last=False,
        num_workers=4)


除了 compute_loss 的代码实现有所不同,异构图的训练循环与同构图中的训练循环几乎相同,

计算损失函数接受节点类型和预测的两个字典。

model = Model(in_features, hidden_features, out_features, num_classes, etypes)
    model = model.cuda()
    opt = torch.optim.Adam(model.parameters())
    for input_nodes, edge_subgraph, blocks in dataloader:
        blocks = [b.to(torch.device('cuda')) for b in blocks]
        edge_subgraph = edge_subgraph.to(torch.device('cuda'))
        input_features = blocks[0].srcdata['features']
        edge_labels = edge_subgraph.edata['labels']
        edge_predictions = model(edge_subgraph, blocks, input_features)
        loss = compute_loss(edge_labels, edge_predictions)
        opt.zero_grad()
        loss.backward()
        opt.step()


完整代码可以查看:GCMC <https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc>


相关文章
|
2月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
99 2
|
8天前
|
机器学习/深度学习 数据采集 人工智能
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
GeneralDyG 是南洋理工大学推出的通用动态图异常检测方法,通过时间 ego-graph 采样、图神经网络和时间感知 Transformer 模块,有效应对数据多样性、动态特征捕捉和计算成本高等挑战。
37 18
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
|
1月前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
71 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
20天前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
50 12
|
26天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
85 8
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
46 2
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
179 1
|
2月前
|
安全 算法 网络安全
量子计算与网络安全:保护数据的新方法
量子计算的崛起为网络安全带来了新的挑战和机遇。本文介绍了量子计算的基本原理,重点探讨了量子加密技术,如量子密钥分发(QKD)和量子签名,这些技术利用量子物理的特性,提供更高的安全性和可扩展性。未来,量子加密将在金融、政府通信等领域发挥重要作用,但仍需克服量子硬件不稳定性和算法优化等挑战。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】