用 Python 对图片主体轮廓进行提取、颜色标记、并计算区域面积

简介: Python + Opencv2 实现轮廓提取,轮廓区域面积计算;对图像处理时,会遇到这样一个场景:找到图像主体轮廓,这是其一,可能为了凸显轮廓,需要用指定的颜色进行标记;轮廓标记完可能任务还没有结束,还需对轮廓所勾勒的像素面积区域统计计算。

Python +  Opencv2  实现轮廓提取,轮廓区域面积计算;

对图像处理时,会遇到这样一个场景:找到图像主体轮廓,这是其一,可能为了凸显轮廓,需要用指定的颜色进行标记;轮廓标记完可能任务还没有结束,还需对轮廓所勾勒的像素面积区域统计计算。


本篇文章的主要内容就是要解决上面场景遇到的三个问问题

  • 找到图像主题轮廓;
  • 用指定颜色对源图像进行轮廓标记;
  • 计算轮廓中的主体;

实验环境配置为 Python + Opencv 3.4, 处理的图像如下:



微信图片_20220520111311.jpgimages.jpg


第一步,提取轮廓,Opencv 中的 findContours() 函数 可以直接提取轮廓,但对输入图像有一定要求

  • 一,输入的图像必须是单通道,三通道不允许;
  • 二,输入的图像数据类型需是 8UC1;否则程序会报错的,报错信息如下:
error: (-210) [start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL otherwise supports CV_32SC1 images only in function cvStartFindContours_Impl


解决方法,在读取时加入下面这行代码进行数据格式转换,同时解决上面两个问题:

mat_img2 = cv2.imread(img_path,cv2.CV_8UC1)


  • 三、输入的图像背景需是黑色的,否则轮廓提取失败,就以本次图像为例,如果直接提取效果如下:

微信图片_20220520111330.jpg1.jpg


图片最外层是一层黑色部分,所以最终结果就是标记最外层;对这类背景非黑色的图片做轮廓提取时,需要进行预处理:把背景变为黑色

提供一个简单办法,阈值化处理:设定一个阈值 Threshold 和一个指定值 OutsideValue ,当图像中像素满足某种条件(大于或小于设定的阈值时),像素值发生变化


自适应阈值化分割


这里用到的是 Opencv 提供的自适应阈值分割算法,其函数格式为:

dst=cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

  • src  需要分割的图像( adarray 类型);
  • maxValue ,满足条件是替换的像素值,等价于上面提到的 OutsideValue;
  • adaptiveMetheod: 自适应阈值分割算法,Opencv 中提供两种方法

1,ADAPTIVE_THRESH_MEAN_C : 最后的像素值 微信图片_20220520111332.png 为原像素值 微信图片_20220520111334.png微信图片_20220520111335.png 区域像素的平均值 ;


2,ADAPTIVE_THRESH_GAUSSIAN_C : 最后像素值 微信图片_20220520111337.png 为原像素值 微信图片_20220520111339.png 附近 微信图片_20220520111341.png  区域大小最小值  ;

  • thresholdType 阈值分割方法,Opencv 提供了5 种;


1,THRESH_BINARY:

微信图片_20220520111343.png

2,THRESH_BINARY_INV:

微信图片_20220520111345.png

3,THRESH_TRUNC:

微信图片_20220520111412.png

4,THRESH_TOZERO:

微信图片_20220520111415.png

5,THRESH_TOZERO_INV;

微信图片_20220520111417.png

  • dst : 返回的阈值分割图像(是 ndarray 类型)

下面这行代码就是本次实验设置的参数:

dst = cv2.adaptiveThreshold(mat_img2,210,cv2.BORDER_REPLICATE,cv2.THRESH_BINARY_INV,3,10)


自适应阈值分割的结果:

微信图片_20220520111417.png


轮廓提取


接下来就是进行轮廓提取了,用到的函数:

image, contours, hierarchy=cv2.findContours(image, mode, method)

  • image 返回的图像,在 Opencv 4.0 之后就没有这个参数了;
  • contours 标记的轮廓,以 list 形式存在,每个轮廓中都包含了轮廓像素的坐标向量;
  • hierarchy  表示轮廓的继承关系,一般用不到;d
  • image 后面image 表示需要标记轮廓的图像,以 ndarray 格式存在;
  • mode 标记轮廓的模式,Opencv 提供了4种;

1,RETR_EXTERNAL;只提取整体外部轮廓;

2,RETR_LIST;提取所有轮廓,不需要建立任何继承关系;

3, RETR_CCOMP ;提取所有轮廓,最后形成两个水平集,外面一个,内部一个;

4, RETR_TREE ;提取所有轮廓,构建等级关系(父子继承关系)

  • method :轮廓近似点连接方式,例如一个长方形,可以由数百个点连接而成,单节省内存的方式就是找到四个角点即可;
  • 其中前者为 CHAIN_APPROX_NONE  后者为 CHAIN_APPROX_SIMPLE

这里分别对 mode 设置不同的参数,一个设为 RETR_TREE (提取全部轮廓),一个设置 RETR_EXTRENAL (只提取最外部轮廓 );可以看一下提取轮廓效果:


RETR_TREE 结果:

微信图片_20220520111419.jpg


RETR_EXTRENAL 结果:

微信图片_20220520111421.jpg


是不是感受到了mode 不同导致轮廓的差距;一般只提取一个轮廓用 RETR_EXTRENAL,多个的话用 RETR_TREE;


轮廓标记


对轮廓颜色绘制,用到 的函数

cv2.drawContours(image, contours, contourIdx, color,thickness)

  • image 绘制轮廓的图像 ndarray 格式;
  • contours ,findContours 函数找到的轮廓列表;
  • contourIdx 绘制轮廓的索引数,取整数时绘制特定索引的轮廓,为负值时,绘制全部轮廓;
  • color 绘制轮廓所用到的颜色,这里需要提醒一下, 想使用 RGB 彩色绘制时,必须保证 输入的 image 为三通道,否则轮廓线非黑即白;
  • thickness ,用于绘制轮廓线条的宽度,取负值时将绘制整个轮廓区域;
相关文章
|
1月前
|
Python
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
160 60
|
1月前
|
Python
Python实用记录(六):如何打开txt文档并删除指定绝对路径下图片
这篇文章介绍了如何使用Python打开txt文档,删除文档中指定路径的图片,并提供了一段示例代码来展示这一过程。
28 1
|
18天前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
45 3
|
29天前
|
Python
【10月更文挑战第15天】「Mac上学Python 26」小学奥数篇12 - 图形变换与坐标计算
本篇将通过 Python 和 Cangjie 双语实现图形变换与坐标计算。这个题目帮助学生理解平面几何中的旋转、平移和对称变换,并学会用编程实现坐标变化。
64 1
|
1月前
|
机器学习/深度学习 移动开发 Python
【10月更文挑战第11天】「Mac上学Python 22」小学奥数篇8 - 排列组合计算
本篇将通过 Python 和 Cangjie 双语讲解如何计算排列与组合。这道题目旨在让学生学会使用排列组合公式解决实际问题,并加深对数学知识和编程逻辑的理解。
63 4
|
1月前
|
数据可视化 Python
【10月更文挑战第12天】「Mac上学Python 23」小学奥数篇9 - 基础概率计算
本篇将通过 Python 和 Cangjie 双语实现基础概率的计算,帮助学生学习如何解决简单的概率问题,并培养逻辑推理和编程思维。
48 1
|
1月前
|
Python
使用python计算两个日期之前的相差天数,周数
使用python计算两个日期之前的相差天数,周数
35 0
|
6天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
6天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
6天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!