基于Spark Streaming 进行 MySQL Binlog 日志准实时传输

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 基本架构 RDS -> SLS -> Spark Streaming -> Spark HDFS 上述链路主要包含3个过程: 如何把 RDS 的 binlog 收集到 SLS。 如何通过 Spark Streaming 将 SLS 中的日志读取出来,进行分析。

基本架构

RDS -> SLS -> Spark Streaming -> Spark HDFS

上述链路主要包含3个过程:

  1. 如何把 RDS 的 binlog 收集到 SLS。
  2. 如何通过 Spark Streaming 将 SLS 中的日志读取出来,进行分析。
  3. 如何把链路 2 中读取和处理过的日志,保存到 Spark HDFS中。

环境准备

  1. 安装一个 MySQL 类型的数据库(使用 MySQL 协议,例如 RDS、DRDS 等),开启 log-bin 功能,且配置 binlog 类型为 ROW 模式(RDS默认开启)。
  2. 开通 SLS 服务。

操作步骤

  1. 检查 MySQL 数据库环境。

    1. 查看是否开启 log-bin 功能。
    mysql> show variables like "log_bin";
    +---------------+-------+
    | Variable_name | Value |
    +---------------+-------+
    | log_bin       | ON    |
    +---------------+-------+
    1 row in set (0.02 sec)
    1. 查看 binlog 类型
    mysql> show variables like "binlog_format";
    +---------------+-------+
    | Variable_name | Value |
    +---------------+-------+
    | binlog_format | ROW   |
    +---------------+-------+
    1 row in set (0.03 sec)  
  2. 添加用户权限。(也可以直接通过RDS控制台添加)

    CREATE USER canal IDENTIFIED BY ‘canal’;GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON . TO ‘canal’@’%’;FLUSH PRIVILEGES;
  3. 为 SLS 服务添加对应的配置文件,并检查数据是否正常采集。

    1. 在 SLS 控制台添加对应的 project 和 logstore,例如:创建一个名称为 canaltest 的 project,然后创建一个名称为 canal 的 logstore。
    2. 对 SLS 进行配置:在 /etc/ilogtail 目录下创建文件user_local_config.json,具体配置如下:
    {
    "metrics": {
     "##1.0##canaltest$plugin-local": {
         "aliuid": "****",
         "enable": true,
         "category": "canal",
         "defaultEndpoint": "*******",
         "project_name": "canaltest",
         "region": "cn-hangzhou",
         "version": 2
         "log_type": "plugin",
         "plugin": {
             "inputs": [
                 {
                     "type": "service_canal",
                     "detail": {
                         "Host": "*****",
                         "Password": "****",
                         "ServerID": ****,
                         "User" : "***",
                         "DataBases": [
                             "yourdb"
                         ],
                         "IgnoreTables": [
                             "\\S+_inner"
                         ],
                          "TextToString" : true
                     }
                 }
             ],
             "flushers": [
                 {
                     "type": "flusher_sls",
                     "detail": {}
                 }
             ]
         }
     }
    }
    }

    其中 detail 中的 Host 和 Password 等信息为 MySQL 数据库信息,User 信息为之前授权过的用户名。aliUid、defaultEndpoint、project_name、category 请根据自己的实际情况填写对应的用户和 SLS 信息。

    1. 等待约 2 分钟,通过 SLS 控制台查看日志数据是否上传成功,具体如图所示。
      image

如果日志数据没有采集成功,请根据SLS的提示,查看SLS的采集日志进行排查。

  1. 准备代码,将代码编译成 jar 包,然后上传到 OSS。

    1. 将 EMR 的示例代码通过 git 复制下来,然后进行修改,具体命令为:
    git clone https://github.com/aliyun/aliyun-emapreduce-demo.git。

    示例代码中已经有 LoghubSample 类,该类主要用于从 SLS 采集数据并打印。以下是修改后的代码,供参考:

    package com.aliyun.emr.example
    import org.apache.spark.SparkConf
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.aliyun.logservice.LoghubUtils
    import org.apache.spark.streaming.{Milliseconds, StreamingContext}
    object LoghubSample {
    def main(args: Array[String]): Unit = {
    if (args.length < 7) {
     System.err.println(
       """Usage: bin/spark-submit --class LoghubSample examples-1.0-SNAPSHOT-shaded.jar
         |            
         |           
       """.stripMargin)
     System.exit(1)
    }
    val loghubProject = args(0)
    val logStore = args(1)
    val loghubGroupName = args(2)
    val endpoint = args(3)
    val accessKeyId = args(4)
    val accessKeySecret = args(5)
    val batchInterval = Milliseconds(args(6).toInt * 1000)
    val conf = new SparkConf().setAppName("Mysql Sync")
    //    conf.setMaster("local[4]");
    val ssc = new StreamingContext(conf, batchInterval)
    val loghubStream = LoghubUtils.createStream(
     ssc,
     loghubProject,
     logStore,
     loghubGroupName,
     endpoint,
     1,
     accessKeyId,
     accessKeySecret,
     StorageLevel.MEMORY_AND_DISK)
    loghubStream.foreachRDD(rdd =>
       rdd.saveAsTextFile("/mysqlbinlog")
    )
    ssc.start()
    ssc.awaitTermination()
    }
    }

其中的主要改动是:

loghubStream.foreachRDD(rdd => rdd.saveAsObjectFile(“/mysqlbinlog”) )

这样在 EMR 集群中运行时,就会把Spark Streaming 中流出来的数据,保存到 EMR 的 HDFS 中。

  1. 说明
    由于如果要在本地运行,请在本地环境提前搭建 Hadoop 集群。

由于 EMR 的 Spark SDK 做了升级,其示例代码比较旧,不能直接在参数中传递 OSS 的 AccessKeyId、AccessKeySecret, 而是需要通过 SparkConf 进行设置,如下所示。

trait RunLocally {
val conf = new SparkConf().setAppName(getAppName).setMaster("local[4]")
conf.set("spark.hadoop.fs.oss.impl", "com.aliyun.fs.oss.nat.NativeOssFileSystem")
conf.set("spark.hadoop.mapreduce.job.run-local", "true")
conf.set("spark.hadoop.fs.oss.endpoint", "YourEndpoint")
conf.set("spark.hadoop.fs.oss.accessKeyId", "YourId")
conf.set("spark.hadoop.fs.oss.accessKeySecret", "YourSecret")
conf.set("spark.hadoop.job.runlocal", "true")
conf.set("spark.hadoop.fs.oss.impl", "com.aliyun.fs.oss.nat.NativeOssFileSystem")
conf.set("spark.hadoop.fs.oss.buffer.dirs", "/mnt/disk1")
val sc = new SparkContext(conf)
def getAppName: String
}

在本地调试时,需要把 loghubStream.foreachRDD(rdd => rdd.saveAsObjectFile(“/mysqlbinlog”) ) 中的 /mysqlbinlog 修改成本地 HDFS的地址。

  1. 代码编译。
    在本地调试完成后,我们可以通过如下命令进行打包编译:

  2. clean install

  3. 上传 jar 包。
    请先在 OSS 上建立 bucket 为 qiaozhou-EMR/jar的目录,然后通过OSS 控制台或 OSS 的 SDK 将 /target/shaded目录下的 examples-1.1-shaded.jar上传到 OSS 的这个目录下。上传后的 jar 包地址为 oss://qiaozhou-EMR/jar/examples-1.1-shaded.jar,这个地址在后面会用上,如下图所示:

image

  1. 搭建 EMR 集群,创建任务并运行执行计划。

    1. 通过 EMR 控制台创建一个 EMR 集群,大约需要 10 分钟左右,请耐心等待。
    2. 创建一个类型为 Spark 的作业。
      请根据您具体的配置将 SLS_endpoint $SLS_access_id $SLS_secret_key 替换成真实值。请注意参数的顺序,否则可能会报错。
    —master yarn —deploy-mode client —driver-memory 4g —executor-memory 2g —executor-cores 2 —class com.aliyun.EMR.example.LoghubSample ossref://EMR-test/jar/examples-1.1-shaded.jar canaltest canal sparkstreaming $SLS_endpoint $SLS_access_id $SLS_secret_key 1

运行以上的命令

  1. 查询 Master 节点的IP
  2. 通过 SSH 登录后,执行以下命令:

  3. fs -ls /

  4. 可以看到 mysqlbinlog 开头的目录,再通过以下命令查看 mysqlbinlog 文件:

  5. fs -ls /mysqlbinlog

还可以通过 hadoop fs -cat /mysqlbinlog/part-00000 命令查看文件内容。

  1. 错误排查。
    如果没有看到正常的结果,可以登陆节点,查看对应的作业的错误情况。
相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
40 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
82 0
|
1月前
|
SQL 存储 关系型数据库
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
老架构师尼恩在其读者交流群中分享了关于 MySQL 中 redo log、undo log 和 binlog 的面试题及其答案。这些问题涵盖了事务的 ACID 特性、日志的一致性问题、SQL 语句的执行流程等。尼恩详细解释了这些日志的作用、所在架构层级、日志形式、缓存机制以及写文件方式等内容。他还提供了多个面试题的详细解答,帮助读者系统化地掌握这些知识点,提升面试表现。此外,尼恩还推荐了《尼恩Java面试宝典PDF》和其他技术圣经系列PDF,帮助读者进一步巩固知识,实现“offer自由”。
美团面试:binlog、redo log、undo log的底层原理是什么?它们分别实现ACID的哪个特性?
|
9天前
|
分布式计算 流计算 Spark
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
|
27天前
|
存储 关系型数据库 MySQL
MySQL中的Redo Log、Undo Log和Binlog:深入解析
【10月更文挑战第21天】在数据库管理系统中,日志是保障数据一致性和完整性的关键机制。MySQL作为一种广泛使用的关系型数据库管理系统,提供了多种日志类型来满足不同的需求。本文将详细介绍MySQL中的Redo Log、Undo Log和Binlog,从背景、业务场景、功能、底层实现原理、使用措施等方面进行详细分析,并通过Java代码示例展示如何与这些日志进行交互。
59 0
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
55 0
|
1月前
|
SQL 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
29 0
|
1月前
|
存储 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
43 0
|
1月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
30 0
|
1月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
29 0