阿里云机器学习技术与应用

简介: 本文整理自2017云栖大会-成都峰会上阿里云高级专家刘吉哲的分享讲义。讲义主要分享了阿里云机器学习系统PAI2.0的算法、框架及其关键技术和应用举例。

本文整理自2017云栖大会-成都峰会上阿里云高级专家刘吉哲的分享讲义。讲义主要分享了阿里云机器学习系统PAI2.0的算法、框架及其关键技术和应用举例。



88e001ec8c60e9e42407f82ffc428540e633dec5

3b612df9186b6c006697674e2d001e777c8bc801

fa6e59e623b71108fef41b213d9474c71e916177

a8f5db66079298ecc1d83757775ae4b89af681a3

58b7191b00fcde8a3472442d350c0fc73fb0e4f8

2e48ce73926db702db9a16be2af0416a52238d5c

62934a2f15cd1d234436a4a0065efeecea6353e6

7e30251abb103b195e0fb7b9f41899742d48a093

67d7b1d75e83385cb52e9a6e8de3d56eec7b1caf

9fb658c2941dc5880fe900d637d8ec64a8937081

836b34449055371170aec6eebac34cf3323339b2

29a790f59d66f38296832a918eca3d2bde00225e

ebdfb477cdcfab72c740fcc52971b1802386ad64

416a91fcf55f9c4949b6046c9242eb1f8506eee9

73adbf0f9c01ea6ea3a9aa8708c99349e07f2d1d

93c05705df2229fc0e82884e4b584182aa26baab

da005e5c27455bfadcc09fd2d823b6ed13de3765

41045f1cd974621e74711077e1671708b7f23ec3

d9c57bbf27b24f7ded9156cbe4f12526358acec8

bf776a5bf067b0a38966ea46fd6a035c1d71a82d

9f2f9b165ecc9e8a6909fed4709cd550654564e5

38d6f242ba84cf48376652fc51890a4efb7a463b

7466466e776fd6141ad3ec02d521908dc6fcf55a

8404c2aae3508d1c3f97253f33b9c6a41833ecf7

5457d11f49ec8ea166e5c8c3678214ec3326c784

63c59ae56e785d798225d97b6842241c8439190f

ad4c81cbc0b165ca40ec3f1168ef080573f5297c

2f4c286d9bed1866178b453370e8ceffe015802d

22b23443bcf8452a60c23918c423a279d292cd1f

相关文章
|
21天前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
3天前
|
数据采集 人工智能 API
生物医药蛋白分子数据采集:支撑大模型训练的技术实践分享
作为生物信息学领域的数据工程师,近期在为蛋白质相互作用预测AI大模型构建训练集时,我面临着从PDB、UniProt等学术数据库获取高质量三维结构、序列及功能注释数据的核心挑战。通过综合运用反爬对抗技术,成功突破了数据库的速率限制、验证码验证等反爬机制,将数据采集效率提升4倍,为蛋白质-配体结合预测模型训练提供了包含10万+条有效数据的基础数据集,提高了该模型预测的准确性。
25 1
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
41 1
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
1月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
探索机器学习在农业中的应用:从作物预测到精准农业
探索机器学习在农业中的应用:从作物预测到精准农业
|
23天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
23天前
|
人工智能 自然语言处理 安全
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
|
4月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
245 6
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。

热门文章

最新文章