R语言机器学习方法分析二手车价格影响因素

简介: R语言机器学习方法分析二手车价格影响因素

相关视频

image.png

image.png

任务 / 目标

根据印度二手车交易市场1996-2019年数据,进行清洗,建模,预测。

数据源准备

7253笔交易数据包括汽车属性和交易日期、地点等信息。分析数据构成:

将数据分为NA和非NA组,分析缺失值是否均匀分布: image.png


对于的因变量“交易价格”,可见其缺失值基本均匀分布。

image.png


其他自变量的缺失值也基本均匀分布。

特征转换

对一些因变量进行dummy variable转换。对大数值变量如引擎容量,已行驶的公里数进行log transformation。

划分训练集和测试集

75% training data, 25 test data. RMSE作为衡量模型精度的标准。 image.png


建模

10 folds Validation when training models to choose best model tuning parameters .

image.png

1. Linear Regression with mixing Lasso & Ridge Penalty:

image.png

包含三种模型的混合预测。

image.png


点击标题查阅往期内容


R语言二手车汽车销售数据可视化探索:预处理、平滑密度图、地理空间可视化

image.png


左右滑动查看更多


image.png

image.png

Best tune: Cost(M) = 10.

image.png

1. Random Forests:

0568268040c5f69d1682fd1ac5251e59.png

随着随机选定的因变量数量提高,10 folds Cross Validation所展示的拟合效果也有波折地逐渐提高。

1.    Stochastic Gradient Boosting Machine

69828b1b02a725694b4cfa210a1d9bb2.png

调整的参数为树深,树层数达到6时拟合效果最好。

601a9b592c1e38614767e44cc56b50cc.png

542e73e6ddaf34b4885ad79761f3d2e6.png

模型优化

各个模型都进行了调参过程。主要依据为10 folds cross validation

结果

在此案例中,Stochastic Gradient Boosting Machine 所得到的RMSE值最小,预测效果最好。

6ee486b439ea8664954fdbf330374902.png

预测结果仅作为参考一个权重值,还需要专家意见,按照一定的权重来计算。

以下为预测集和测试集的部分展示:

6c3706a19578c78db462aa45f4ddf058.png


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
118 9
|
8月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
8月前
|
机器学习/深度学习 数据采集 算法
R语言中的机器学习库:caret与mlr的深度解析
【9月更文挑战第2天】Caret和mlr是R语言中两个非常重要的机器学习库,它们在数据预处理、模型构建、调优和评估等方面提供了丰富的功能。Caret以其易用性和集成性著称,适合初学者和快速原型开发;而mlr则以其全面性和可扩展性见长,适合处理复杂的机器学习项目。在实际应用中,用户可以根据具体需求和项目特点选择合适的库进行开发。无论是学术研究、商业智能还是教育场景,这两个库都能为数据科学家和机器学习爱好者提供强大的支持。
|
7月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
145 3
|
7月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
275 3
|
7月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
142 2
|
8月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
8月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章