R语言机器学习方法分析二手车价格影响因素

简介: R语言机器学习方法分析二手车价格影响因素

相关视频

image.png

image.png

任务 / 目标

根据印度二手车交易市场1996-2019年数据,进行清洗,建模,预测。

数据源准备

7253笔交易数据包括汽车属性和交易日期、地点等信息。分析数据构成:

将数据分为NA和非NA组,分析缺失值是否均匀分布: image.png


对于的因变量“交易价格”,可见其缺失值基本均匀分布。

image.png


其他自变量的缺失值也基本均匀分布。

特征转换

对一些因变量进行dummy variable转换。对大数值变量如引擎容量,已行驶的公里数进行log transformation。

划分训练集和测试集

75% training data, 25 test data. RMSE作为衡量模型精度的标准。 image.png


建模

10 folds Validation when training models to choose best model tuning parameters .

image.png

1. Linear Regression with mixing Lasso & Ridge Penalty:

image.png

包含三种模型的混合预测。

image.png


点击标题查阅往期内容


R语言二手车汽车销售数据可视化探索:预处理、平滑密度图、地理空间可视化

image.png


左右滑动查看更多


image.png

image.png

Best tune: Cost(M) = 10.

image.png

1. Random Forests:

0568268040c5f69d1682fd1ac5251e59.png

随着随机选定的因变量数量提高,10 folds Cross Validation所展示的拟合效果也有波折地逐渐提高。

1.    Stochastic Gradient Boosting Machine

69828b1b02a725694b4cfa210a1d9bb2.png

调整的参数为树深,树层数达到6时拟合效果最好。

601a9b592c1e38614767e44cc56b50cc.png

542e73e6ddaf34b4885ad79761f3d2e6.png

模型优化

各个模型都进行了调参过程。主要依据为10 folds cross validation

结果

在此案例中,Stochastic Gradient Boosting Machine 所得到的RMSE值最小,预测效果最好。

6ee486b439ea8664954fdbf330374902.png

预测结果仅作为参考一个权重值,还需要专家意见,按照一定的权重来计算。

以下为预测集和测试集的部分展示:

6c3706a19578c78db462aa45f4ddf058.png


相关文章
|
5月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
446 8
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
469 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1425 6
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
|
11月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
436 9
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2307 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
12月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
618 3
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
805 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
707 15
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
386 12