大家好,我是对白。
ACM SIGIR 2022是CCF A类会议,人工智能领域智能信息检索( Information Retrieval,IR)方向最权威的国际会议。会议专注于信息的存储、检索和传播等各个方面,包括研究战略、输出方案和系统评估等等。第45届国际计算机学会信息检索大会(The 45rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022)计划于今年7月11日-7月15日在西班牙马德里召开。这次会议共收到794篇长文和667篇短文投稿,有161篇长文和165篇短文被录用,录用率约为20%和24.7%。官方发布的接收论文列表:
Accepted Paperssigir.org/sigir2022/program/accepted/
本文选取了SIGIR 2022中170篇长文或短文,重点对推荐系统相关论文(124篇)按不同的任务场景和研究话题进行分类整理,也对其他热门研究方向(问答、对话、知识图谱等,46篇)进行了归类,以供参考。文章也同步发布在AI Box知乎专栏(知乎搜索「 AI Box专栏」),整理过程中难免有疏漏,欢迎大家在知乎专栏的文章下方评论留言,交流探讨!
从词云图看今年SIGIR的研究热点:根据长文和短文的标题绘制如下词云图,可以看到今年研究方向依旧集中在Recommendation,也包括Retrieval、Query等方向;主要任务包括:Ranking、Cross-domain、Multi-Model/Behavior、Few-Shot、User modeling、Conversation等;热门技术包括:Neural Networks、Knowledge Graph、GNN、Contrastive Learning、Transformer等,其中基于Graph的方法依旧是今年的研究热点。
本文目录
1 按照任务场景划分
- CTR
- Collaborative Filtering
- Sequential/Session-based Recommendation
- Conversational Recommender System
- POI Recommendation
- Cross-domain/Multi-behavior Recommendation
- Knowledge-aware Recommendation
- News Recommendation
- Others
2 按照主要技术划分
- GNN-based
- RL-based
- Contrastive Learning based
- AutoML-based
- Others
3 按照研究话题划分
- Bias/Debias in Recommender System
- Explanation in Recommender System
- Long-tail/Cold-start in Recommender System
- Fairness in Recommender System
- Diversity in Recommender System
- Attack/Denoise in Recommender System
- Others
4 其他研究方向
- QA
- Knowledge Graph
- Conversation/ Dialog
- Summarization
- Multi-Modality
- Generation
- Representation Learning
1.按照任务场景划分
1.1 CTR /CVR Prediction
- Enhancing CTR Prediction with Context-Aware Feature Representation Learning 【上下文相关的特征表示】
- HIEN: Hierarchical Intention Embedding Network for Click-Through Rate Prediction 【层次化意图嵌入网络】
- NAS-CTR: Efficient Neural Architecture Search for Click-Through Rate Prediction 【高效的网络结构搜索】
- NMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering 【模型无关的归纳式协同过滤模块】
- Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer 【图遮盖的Transformer】
- Neural Statistics for Click-Through Rate Prediction 【short paper,神经统计学】
- Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction 【short paper,基于排序的CTR预估】
- DisenCTR: Dynamic Graph-based Disentangled Representation for Click-Through Rate Prediction 【基于图的解耦表示】
- Deep Multi-Representational Item Network for CTR Prediction 【short paper,多重表示商品网络】
- Gating-adapted Wavelet Multiresolution Analysis for Exposure Sequence Modeling in CTR prediction 【short paper,多分辨率小波分析】
- MetaCVR: Conversion Rate Prediction via Meta Learning in Small-Scale Recommendation Scenarios 【short paper,小规模推荐场景下的元学习】
- Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction 【short paper,对抗过滤建模用户长期行为序列】
- Clustering based Behavior Sampling with Long Sequential Data for CTR Prediction 【short paper,长序列数据集基于聚类的行为采样】
- CTnoCVR: A Novelty Auxiliary Task Making the Lower-CTR-Higher-CVR Upper 【short paper,新颖度辅助任务】
1.2 Collaborative Filtering
- Geometric Disentangled Collaborative Filtering 【几何解耦的协同过滤】
- Self-Augmented Recommendation with Hypergraph Contrastive Collaborative Filtering 【超图上的对比学习】
- Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering 【图协同过滤在准确度和新颖度上的表现】
- Unify Local and Global Information for Top-N Recommendation 【综合局部和全局信息】
- Enhancing Top-N Item Recommendations by Peer Collaboration 【short paper ,同龄人协同】
- Evaluation of Herd Behavior Caused by Population-scale Concept Drift in Collaborative Filtering 【short paper】
1.3 Sequential/Session-based Recommendations
- Decoupled Side Information Fusion for Sequential Recommendation 【融合边缘特征的序列推荐】
- On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation 【自监督知识蒸馏】
- Multi-Agent RL-based Information Selection Model for Sequential Recommendation 【多智能体信息选择】
- An Attribute-Driven Mirroring Graph Network for Session-based Recommendation 【特征驱动的反射图网络】
- When Multi-Level Meets Multi-Interest: A Multi-Grained Neural Model for Sequential Recommendation 【多粒度网络】
- Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation 【考虑价格和兴趣的推荐】
- AutoGSR: Neural Architecture Search for Graph-based Session Recommendation 【面向图会话推荐的网络结构搜索】
- Ada-Ranker: A Data Distribution Adaptive Ranking Paradigm for Sequential Recommendation 【数据分布自适应排序】
- Multi-Faceted Global Item Relation Learning for Session-Based Recommendation 【多面全局商品关系学习】
- ReCANet: A Repeat Consumption-Aware Neural Network for Next Basket Recommendation in Grocery Shopping 【考虑重复消费的网络】
- Determinantal Point Process Set Likelihood-Based Loss Functions for Sequential Recommendation 【基于DPP的损失函数】
- Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation 【建模隐式反馈】
- Coarse-to-Fine Sparse Sequential Recommendation 【short paper,粗到细的稀疏序列化推荐】
- Dual Contrastive Network for Sequential Recommendation 【short paper,双对比网络】
- Explainable Session-based Recommendation with Meta-Path Guided Instances and Self-Attention Mechanism 【short paper, 基于元路径指导和自注意力机制的可解释会话推荐】
- Item-Provider Co-learning for Sequential Recommendation 【short paper,商品-商家一同训练】
- RESETBERT4Rec: A Pre-training Model Integrating Time And User Historical Behavior for Sequential Recommendation 【short paper,融合时间和用户历史行为的预训练模型】
- Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-based Recommendation【short paper,意图解耦增强超图神经网络】
- CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space 【short paper,在一致表示空间上的简单有效会话推荐】
- DAGNN: Demand-aware Graph Neural Networks for Session-based Recommendation 【short paper, 需求感知的图神经网络】
- Progressive Self-Attention Network with Unsymmetrical Positional Encoding for Sequential Recommendation 【short paper,使用非对称位置编码的自注意力网络】
- ELECRec: Training Sequential Recommenders as Discriminators 【short paper,训练序列推荐模型作为判别器】
- Exploiting Session Information in BERT-based Session-aware Sequential Recommendation 【short paper,在基于BERT的模型中利用会话信息】
1.4 Conversational Recommender System
- Learning to Infer User Implicit Preference in Conversational Recommendation 【学习推测用户隐偏好】
- User-Centric Conversational Recommendation with Multi-Aspect User Modeling 【多角度用户建模】
- Variational Reasoning about User Preferences for Conversational Recommendation 【用户偏好的变分推理】
- Analyzing and Simulating User Utterance Reformulation in Conversational Recommender Systems 【对话推荐中模仿用户言论】
- Improving Conversational Recommender Systems via Transformer-based Sequential Modelling【short paper,基于Transformer的序列化建模】
- Conversational Recommendation via Hierarchical Information Modeling 【short paper,层次化信息建模】
1.5 POI Recommendation
- Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation 【多任务图循环网络】
- Learning Graph-based Disentangled Representations for Next POI Recommendation 【学习基于图的解耦表示】
- GETNext: Trajectory Flow Map Enhanced Transformer for Next POI Recommendation 【轨迹图加强的Transformer】
- Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network 【short paper,自修正的多模态Transformer】
- Empowering Next POI Recommendation with Multi-Relational Modeling 【多重关系建模】
1.6 Cross-domain/Multi-behavior Recommendation
- Co-training Disentangled Domain Adaptation Network for Leveraging Popularity Bias in Recommenders 【训练解耦的域适应网络来利用流行度偏差】
- DisenCDR: Learning Disentangled Representations for Cross-Domain Recommendation 【解耦表示】
- Doubly-Adaptive Reinforcement Learning for Cross-Domain Interactive Recommendation 【双重适应的强化学习】
- Exploiting Variational Domain-Invariant User Embedding for Partially Overlapped Cross Domain Recommendation 【域不变的用户嵌入】
- Multi-Behavior Sequential Transformer Recommender 【多行为序列化Transformer】
1.7 Knowledge-aware Recommendation
- Knowledge Graph Contrastive Learning for Recommendation 【知识图谱上的对比学习】
- Multi-level Cross-view Contrastive Learning for Knowledge-aware Recommender System 【多级交叉视图的对比学习】
- Alleviating Spurious Correlations in Knowledge-aware Recommendations through Counterfactual Generator 【利用反事实生成器缓解假知识】
- HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation 【层次化知识门控网络】
- KETCH: Knowledge Graph Enhanced Thread Recommendation in Healthcare Forums 【医疗论坛上的知识图谱增强的推荐】
1.8 News Recommendation
- ProFairRec: Provider Fairness-aware News Recommendation 【商家公平的新闻推荐】
- Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation 【建模隐式反馈】
- FUM: Fine-grained and Fast User Modeling for News Recommendation 【short paper,细粒度快速的用户建模】
- Is News Recommendation a Sequential Recommendation Task? 【short paper,新闻推荐是序列化推荐吗】
- News Recommendation with Candidate-aware User Modeling 【short paper,候选感知的用户建模】
- MM-Rec: Visiolinguistic Model Empowered Multimodal News Recommendation 【short paper,视觉语言学增强的多模态新闻推荐】
1.9 others
- CAPTOR: A Crowd-Aware Pre-Travel Recommender System for Out-of-Town Users 【为乡村用户提供的旅游推荐】
- PERD: Personalized Emoji Recommendation with Dynamic User Preference 【short paper,个性化表情推荐】
- Item Similarity Mining for Multi-Market Recommendation 【short paper,多市场推荐中的商品相似度挖掘】
- A Content Recommendation Policy for Gaining Subscribers 【short paper,为提升订阅者的内容推荐策略】
- Thinking inside The Box: Learning Hypercube Representations for Group Recommendation 【超立方体表示用于组推荐】