AAAI 2023杰出论文一作分享:新算法加持的大批量学习加速推荐系统训练

简介: AAAI 2023杰出论文一作分享:新算法加持的大批量学习加速推荐系统训练

CTR(click-through rate)预测模型是个性化推荐场景下的一种常用算法,它通常需要学习用户的反馈(点击、收藏、购买等),而每天在线产生的数据量又是空前庞大的。因此,加快 CTR 预估模型的训练速度至关重要。一般来说,提高训练速度会使用批量训练,不过批量太大会导致模型的准确度有所降低。


在 2 月 7 日至 2 月 14 日于华盛顿举办的 AAAI 2023 会议上,新加坡国立大学和字节跳动的研究者在获得 AAAI 2023 杰出论文奖(Distinguised Paper)的研究《CowClip: Reducing CTR Prediction Model Training Time from 12 hours to 10 minutes on 1 GPU》中,通过数学分析证明了在扩大批次时,对于不常见特征的学习率使用传统的学习率放缩,会影响学习的稳定性。


此外,研究者提出 CowClip 的梯度裁剪算法,可以简单有效扩展批大小。通过在 4 个 CTR 预估模型和 2 个数据集上进行测试,团队成功将原始批大小扩大了 128 倍,并没有造成精度损失。尤其是在 DeepFM 上,通过将批大小从 1K 扩大到 128K,CowClip 实现了 AUC 超过 0.1% 的改进。在单块 V100 GPU 上,将训练时长从原本的 12 小时,缩短至只需 10 分钟,训练提速 72 倍。


北京时间 2 月 14 日 19:00-20:00,机器之心最新一期线上分享邀请到论文一作、新加坡国立大学二年级博士生郑奘巍,为大家解读 CowClip 梯度裁剪算法如何改进大批量学习进而提升推荐系统训练效率的。

相关文章
|
18天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
机器学习/深度学习 安全 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(下)
35 0
|
1月前
|
安全 搜索推荐 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23(上)
32 0
|
1月前
|
自然语言处理 搜索推荐 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(下)
32 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-21(上)
24 0
|
1月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
22 0
|
1月前
|
机器学习/深度学习 存储 人工智能
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(上)
22 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-20(下)
15 0
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。

热门文章

最新文章