基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W+,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗


🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


Java精品实战案例《600套》


2023-2025年最值得选择的Java毕业设计选题大全:1000个热门选题推荐✅✅✅


详细视频演示:

请联系我获取更详细的演示视频


具体实现截图:

系统介绍:

“互联网+”的战略实施后,很多行业的信息化水平都有了很大的提升。但是目前很多行业的管理仍是通过人工管理的方式进行,需要在各个岗位投入大量的人力进行很多重复性工作,使得对人力物力造成诸多浪费,工作效率不高等情况;同时为后续的工作带来了隐患。并且现有的电影推荐系统由于用户的体验感较差、系统流程不完善导致系统的使用率较低。此基于协同过滤算法的电影推荐系统的部署与应用,将对首页,个人中心,用户管理,电影分类管理,免费电影管理,付费电影管理,电影订单管理,我的电影管理,电影论坛,系统管理等功能进行管理,这可以简化管理工作程序、降低劳动成本、提高业务效率和工作效率。为了有效推动个性化智能电影推荐资源的合理配置和使用,适应现代个性化智能电影推荐机构的管理办法,迫切需要研发一套更加全面的基于协同过滤算法的电影推荐系统。


本课题在充分研究了ssm框架基础上,采用B/S模式,以Java为开发语言,MyEclipse为开发工具,MySQL为数据管理平台,实现的内容主要包括首页,个人中心,用户管理,电影分类管理,免费电影管理,付费电影管理,电影订单管理,我的电影管理,电影论坛,系统管理等功能。


系统设计是把本系统的各项功能需求进行细化,而转换为软件系统表示的一个设计过程,在对目标系统的研究分析之后,做出整个系统平台的总体规划,进而对用例中各个对象进一步地合理精细设计。为降低整个系统的复杂度,而使其更加便于修改,提高代码的可读性,我们会将系统模块化,模块间保持相对独立,且每个模块只完成一个子功能,并且与其他模块通过简单的接口链接,即高内聚低耦合原则,而使整个系统能够拥有一个高性能的结构,这边是系统概要设计最重要的目的。在之前的需求分析的基础上,本电影推荐系统结构,如下图所示

image.png



部分代码参考:  

/**

* 登录相关

*/

@RequestMapping("users")

@RestController

public class UserController{

 

   @Autowired

   private UserService userService;

 

   @Autowired

   private TokenService tokenService;

   /**

    * 登录

    */

   @IgnoreAuth

   @PostMapping(value = "/login")

   public R login(String username, String password, String role, HttpServletRequest request) {

       UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));

       if(user != null){

           if(!user.getRole().equals(role)){

               return R.error("权限不正常");

           }

           if(user==null || !user.getPassword().equals(password)) {

               return R.error("账号或密码不正确");

           }

           String token = tokenService.generateToken(user.getId(),username, "users", user.getRole());

           return R.ok().put("token", token);

       }else{

           return R.error("账号或密码或权限不对");

       }

   }

 

   /**

    * 注册

    */

   @IgnoreAuth

   @PostMapping(value = "/register")

   public R register(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {

           return R.error("用户已存在");

       }

       userService.insert(user);

       return R.ok();

   }

   /**

    * 退出

    */

   @GetMapping(value = "logout")

   public R logout(HttpServletRequest request) {

       request.getSession().invalidate();

       return R.ok("退出成功");

   }

 

   /**

    * 密码重置

    */

   @IgnoreAuth

   @RequestMapping(value = "/resetPass")

   public R resetPass(String username, HttpServletRequest request){

       UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));

       if(user==null) {

           return R.error("账号不存在");

       }

       user.setPassword("123456");

       userService.update(user,null);

       return R.ok("密码已重置为:123456");

   }

 

   /**

    * 列表

    */

   @RequestMapping("/page")

   public R page(@RequestParam Map<String, Object> params,UserEntity user){

       EntityWrapper<UserEntity> ew = new EntityWrapper<UserEntity>();

       PageUtils page = userService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.allLike(ew, user), params), params));

       return R.ok().put("data", page);

   }

   /**

    * 信息

    */

   @RequestMapping("/info/{id}")

   public R info(@PathVariable("id") String id){

       UserEntity user = userService.selectById(id);

       return R.ok().put("data", user);

   }

 

   /**

    * 获取用户的session用户信息

    */

   @RequestMapping("/session")

   public R getCurrUser(HttpServletRequest request){

       Integer id = (Integer)request.getSession().getAttribute("userId");

       UserEntity user = userService.selectById(id);

       return R.ok().put("data", user);

   }

   /**

    * 保存

    */

   @PostMapping("/save")

   public R save(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {

           return R.error("用户已存在");

       }

       userService.insert(user);

       return R.ok();

   }

   /**

    * 修改

    */

   @RequestMapping("/update")

   public R update(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       userService.updateById(user);//全部更新

       return R.ok();

   }

   /**

    * 删除

    */

   @RequestMapping("/delete")

   public R delete(@RequestBody Integer[] ids){

       userService.deleteBatchIds(Arrays.asList(ids));

       return R.ok();

   }

}


论文参考:

源码获取:

文章下方名片联系我即可~

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻


2023-2025年最值得选择的Java毕业设计选题大全:1000个热门选题推荐✅✅✅


Java精品实战案例《600套》

相关文章
|
6天前
|
机器学习/深度学习 搜索推荐 大数据
2026版基于python的协同过滤音乐推荐系统
随着数字音乐爆发式增长,传统搜索方式难以满足用户需求,音乐推荐系统成为关键。本文基于大数据技术,结合HDFS存储、MySQL管理及卷积神经网络分析音频内容特征,构建高效个性化推荐系统,提升推荐精准度与用户体验。
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
591 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
机器学习/深度学习 搜索推荐 算法
协同过滤算法
协同过滤算法
990 0
|
7月前
|
人工智能 算法 网络协议
Apipost协议全栈支持+国密算法,调试效率飙出星际!
Apipost是一款强大的API研发管理工具,支持多种协议调试与文档生成。它涵盖HTTP、gRPC、WebSocket、SSE、TCP及金融协议等,提供灵活操作技巧如国密算法支持、实时日志推送、GraphQL可视化查询等。其高效性帮助开发者减少切换工具的时间成本,专注于核心业务逻辑实现,提升开发效率并简化工作流程。
289 2
|
8月前
|
人工智能 自然语言处理 算法
为什么自己写的算法备案文档越改问题越多?
算法备案文档撰写中,许多开发者遇到越改问题越多的困境。主要原因包括:缺乏明确指导标准、对算法理解不深、部门间沟通协作不足、审核反馈机制缺失及撰写人员专业性不足。为解决这些问题,建议深入学习备案要求、加强算法研究、建立有效沟通机制、严格审核反馈,并寻求专业人士帮助。通过这些方法,可以提高文档质量,确保顺利通过审核。
|
10月前
|
算法 搜索推荐
如何用CRDT算法颠覆文档协作模式?
在局域网环境下,高效文档协同编辑面临版本冲突等核心技术挑战,影响协作效率和成果质量。为解决此问题,可采用基于CRDT的算法,允许多用户无冲突实时编辑;或将协同操作模块化,通过任务看板优化协作流程,减少冲突,提高团队效率。未来,局域网协同编辑将更加场景化与个性化,深入探索组织协作文化。
|
前端开发 JavaScript Java
基于Java+Springboot+Vue开发的电影订票管理系统
基于Java+Springboot+Vue开发的电影订票管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Java编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Java的电影订票管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
150 1
基于Java+Springboot+Vue开发的电影订票管理系统
|
机器学习/深度学习 JSON 搜索推荐
深度学习的协同过滤的推荐算法-毕设神器
深度学习的协同过滤的推荐算法-毕设神器
178 5
|
搜索推荐 前端开发 数据可视化
基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现
本文介绍了一个基于Python协同过滤算法的旅游景点推荐系统,该系统采用Django框架、MySQL数据库、Bootstrap前端和echarts数据可视化技术,旨在为用户提供个性化的旅游推荐服务,提升用户体验和旅游市场增长。
1583 9
基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
910 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库