【Pytorch基础教程27】DeepFM推荐算法

简介: DeepFM模型架构图 (出自论文 DeepFM: A Factorization-Machine based Neural Network for CTR Prediction)由上图的DeepFM架构图看出:

一、deepFM原理

上次在【推荐算法实战】DeepFM模型(tensorflow版)已经过了一遍模型的大体原理和tensorflow实现,本文侧重FM公式的优化改机和deepFM代码的pytorch版本的实现。

image.png


DeepFM模型架构图 (出自论文 DeepFM: A Factorization-Machine based Neural Network for CTR Prediction)

由上图的DeepFM架构图看出:

(1)用FM层替换了wide&deep左边你的wide部分;

——加强浅层网络的特征组合能力。

(2)右边保持和wide&deep一毛一样,利用多层神经元(如MLP)进行所有特征的深层处理

(3)最后输出层将FM的output和deep的output组合起来,产生预估结果


image.png


二、FM部分的数学优化


image.png

如果把k维特征向量内积求和公式抽到最外边后,公式就转成了上图这个公式了(不考虑最外边k维求和过程的情况下)。它有两层循环,内循环其实就是指定某个特征的第f位(这个f是由最外层那个k指定的)后,和其它任意特征对应向量的第f位值相乘求和;而外循环则是遍历每个的第f位做循环求和。这样就完成了指定某个特征位f后的特征组合计算过程。最外层的k维循环则依此轮循第f位,于是就算完了步骤三的特征组合。


三、改进FM后的模型代码

同样是将fm_1st_part、二阶特征交叉fm_2nd_part、dnn_output,拼接得到的向量送到最后的sigmoid函数中,进行预测。


其中构造一阶特征的embedding ModuleList:

import torch.nn as nn
categorial_feature_vocabsize = [20] * 8 + [30001] + [1001]
# 列表[20, 20, 20, 20, 20, 20, 20, 20, 30001, 1001]
fm_1st_order_sparse_emb = nn.ModuleList([nn.Embedding(vocab_size, 1) 
                                              for vocab_size 
                                              in categorial_feature_vocabsize])
print(fm_1st_order_sparse_emb)
"""
ModuleList(
  (0): Embedding(20, 1)
  (1): Embedding(20, 1)
  (2): Embedding(20, 1)
  (3): Embedding(20, 1)
  (4): Embedding(20, 1)
  (5): Embedding(20, 1)
  (6): Embedding(20, 1)
  (7): Embedding(20, 1)
  (8): Embedding(30001, 1)
  (9): Embedding(1001, 1)
)
"""

xi大小为[128, 7]xv大小为[128, 10]y大小为[128]

完整的模型部分:

import torch
import torch.nn as nn
import numpy as np
class DeepFM(nn.Module):
    def __init__(self, categorial_feature_vocabsize, continous_feature_names, categorial_feature_names,
                 embed_dim=10, hidden_dim=[128, 128]):
        super().__init__()
        assert len(categorial_feature_vocabsize) == len(categorial_feature_names)
        self.continous_feature_names = continous_feature_names
        self.categorial_feature_names = categorial_feature_names
        # FM part
        # first-order part
        if continous_feature_names:
            self.fm_1st_order_dense = nn.Linear(len(continous_feature_names), 1)
        self.fm_1st_order_sparse_emb = nn.ModuleList([nn.Embedding(vocab_size, 1) for vocab_size in categorial_feature_vocabsize])
        # senond-order part
        self.fm_2nd_order_sparse_emb = nn.ModuleList([nn.Embedding(vocab_size, embed_dim) for vocab_size in categorial_feature_vocabsize])
        # deep part
        self.dense_embed = nn.Sequential(nn.Linear(len(continous_feature_names), len(categorial_feature_names)*embed_dim),
                                         nn.BatchNorm1d(len(categorial_feature_names)*embed_dim),
                                         nn.ReLU(inplace=True))
        self.dnn_part = nn.Sequential(nn.Linear(len(categorial_feature_vocabsize)*embed_dim, hidden_dim[0]),
                                        nn.BatchNorm1d(hidden_dim[0]),
                                        nn.ReLU(inplace=True),
                                        nn.Linear(hidden_dim[0], hidden_dim[1]),
                                        nn.BatchNorm1d(hidden_dim[1]),
                                        nn.ReLU(inplace=True),
                                        nn.Linear(hidden_dim[1], 1))
        # output act
        self.act = nn.Sigmoid()
    def forward(self, xi, xv):
        # FM first-order part
        fm_1st_sparse_res = []
        for i, embed_layer in enumerate(self.fm_1st_order_sparse_emb):
            fm_1st_sparse_res.append(embed_layer(xv[:, i].long()))
        fm_1st_sparse_res = torch.cat(fm_1st_sparse_res, dim=1)
        fm_1st_sparse_res = torch.sum(fm_1st_sparse_res, 1, keepdim=True)
        if xi is not None:
            fm_1st_dense_res = self.fm_1st_order_dense(xi)
            fm_1st_part = fm_1st_dense_res + fm_1st_sparse_res
        else:
            fm_1st_part = fm_1st_sparse_res
        # FM second-order part
        fm_2nd_order_res = []
        for i, embed_layer in enumerate(self.fm_2nd_order_sparse_emb):
            fm_2nd_order_res.append(embed_layer(xv[:, i].long()))
        fm_2nd_concat_1d = torch.stack(fm_2nd_order_res, dim=1)   # [bs, n, emb_dim]
        # sum -> square
        square_sum_embed = torch.pow(torch.sum(fm_2nd_concat_1d, dim=1), 2)
        # square -> sum
        sum_square_embed = torch.sum(torch.pow(fm_2nd_concat_1d, 2), dim=1)
        # minus and half,(和平方-平方和)
        sub = 0.5 * (square_sum_embed - sum_square_embed)
        fm_2nd_part = torch.sum(sub, 1, keepdim=True)
        # Dnn part
        dnn_input = torch.flatten(fm_2nd_concat_1d, 1)
        if xi is not None:
            dense_out = self.dense_embed(xi)
            dnn_input = dnn_input + dense_out
        dnn_output = self.dnn_part(dnn_input)
        out = self.act(fm_1st_part + fm_2nd_part + dnn_output)
        return out

四、训练和测试部分

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import sampler
from data.dataset import build_dataset
from model.DeepFM import DeepFM
def train(epoch):
    model.train()
    for batch_idx, (xi, xv, y) in enumerate(loader_train):
        xi, xv, y = torch.squeeze(xi).to(torch.float32), \
                    torch.squeeze(xv),  \
                    torch.squeeze(y).to(torch.float32)
        #print("xi的大小:\n", xi.shape, "\n")   # torch.Size([128, 7]) 
        #print("xv的大小:\n", xv.shape, "\n")   # torch.Size([128, 10]) 
        #print("y的大小:\n", y.shape, "\n")     # torch.Size([128]) 
        if args.gpu: 
            # 迁移到GPU中,注意迁移的device要和模型的device相同
            xi, xv, y = xi.to(device), xv.to(device), y.to(device)
        # 梯度清零
        optimizer.zero_grad()
        # 向前传递,和计算loss值
        out = model(xi, xv)
        loss = nn.BCELoss()(torch.squeeze(out, dim=1), y)
        # 反向传播
        loss.backward()
        # 更新参数
        optimizer.step()
        if batch_idx % 200 == 0:
            print("epoch {}, batch_idx {}, loss {}".format(epoch, batch_idx, loss))
def test(epoch, best_acc=0):
    model.eval()
    test_loss = 0.0  # cost function error
    correct = 0.0
    for batch_idx, (xi, xv, y) in enumerate(loader_test):
        xi, xv, y = torch.squeeze(xi).to(torch.float32),  \
                    torch.squeeze(xv),  \
                    torch.squeeze(y).to(torch.float32)
        if args.gpu:
            xi, xv, y = xi.to(device), \
                        xv.to(device), \
                        y.to(device)
        out = model(xi, xv)
        test_loss += nn.BCELoss()(torch.squeeze(out, dim=1), y).item()
        correct += ((torch.squeeze(out, dim=1) > 0.5) == y).sum().item()
    if correct/len(loader_test) > best_acc:
        best_acc = correct/len(loader_test)
        torch.save(model, args.save_path)
    print("epoch {}, test loss {}, test acc {}".format(epoch, 
                                                       test_loss/len(loader_test), 
                                                       correct/len(loader_test)))
    return best_acc
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('-gpu', action='store_true', default=True, help='use gpu or not ')
    parser.add_argument('-bs', type=int, default=128, help='batch size for dataloader')
    parser.add_argument('-epoches', type=int, default=15, help='batch size for dataloader')
    parser.add_argument('-warm', type=int, default=1, help='warm up training phase')
    parser.add_argument('-lr', type=float, default=1e-3, help='initial learning rate')
    parser.add_argument('-resume', action='store_true', default=False, help='resume training')
    parser.add_argument('-train_path', action='store_true', default='data/raw/trainingSamples.csv',
                        help='train data path')
    parser.add_argument('-test_path', action='store_true', default='data/raw/testSamples.csv',
                        help='test data path')
    parser.add_argument('-save_path', action='store_true', default='checkpoint/DeepFM/DeepFm_best.pth',
                        help='save model path')
    args = parser.parse_args()
    # 连续型特征(7个)
    continous_feature_names = ['releaseYear', 'movieRatingCount', 'movieAvgRating', 'movieRatingStddev',
                               'userRatingCount', 'userAvgRating', 'userRatingStddev']
    # 类别型特征,注意id类的特征也是属于类别型特征,有10个特征(8个genre,2个id)
    categorial_feature_names = ['userGenre1', 'userGenre2', 'userGenre3', 'userGenre4', 'userGenre5',
                                'movieGenre1', 'movieGenre2', 'movieGenre3', 'userId', 'movieId']
    categorial_feature_vocabsize = [20] * 8 + [30001] + [1001]
    # [20, 20, 20, 20, 20, 20, 20, 20, 30001, 1001] ,最后两个分别是userId 和 movieId
    # build dataset for train and test
    batch_size = args.bs
    train_data = build_dataset(args.train_path)
    # 用dataloader读取数据
    loader_train = DataLoader(train_data, 
                              batch_size=batch_size, 
                              num_workers=8, 
                              shuffle=True, 
                              pin_memory=True)
    test_data = build_dataset(args.test_path)
    loader_test = DataLoader(test_data, 
                             batch_size=batch_size, 
                             num_workers=8)
    # 正向传播时:开启自动求导的异常侦测
    torch.autograd.set_detect_anomaly(True)
    device = torch.device("cuda" if args.gpu else "cpu")
    # train model
    model = DeepFM(categorial_feature_vocabsize, 
                   continous_feature_names, 
                   categorial_feature_names, 
                   embed_dim=64)
    model = model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-3)
    best_acc = 0
    for ep in range(args.epoches):
        # ep为训练的轮次epoch
        train(ep)
        best_acc = test(ep, best_acc)

五、训练结果

最后训练得到的模型在测试集上的准确度为86.67%,效果还是阔以的!

epoch 0, batch_idx 0, loss 57.8125
epoch 0, batch_idx 200, loss 35.660301208496094
epoch 0, batch_idx 400, loss 39.15966033935547
epoch 0, batch_idx 600, loss 33.86609649658203
epoch 0, test loss 23.580318277532403, test acc 74.97727272727273
epoch 1, batch_idx 0, loss 32.055198669433594
epoch 1, batch_idx 200, loss 28.279659271240234
epoch 1, batch_idx 400, loss 21.818199157714844
epoch 1, batch_idx 600, loss 8.688355445861816
epoch 1, test loss 18.055269842798058, test acc 78.07954545454545
epoch 2, batch_idx 0, loss 19.79637908935547
epoch 2, batch_idx 200, loss 13.639955520629883
epoch 2, batch_idx 400, loss 10.169021606445312
epoch 2, batch_idx 600, loss 9.186278343200684
epoch 2, test loss 6.011827245354652, test acc 78.7215909090909
epoch 3, batch_idx 0, loss 8.763715744018555
epoch 3, batch_idx 200, loss 10.750226974487305
epoch 3, batch_idx 400, loss 2.757845163345337
epoch 3, batch_idx 600, loss 4.930475234985352
epoch 3, test loss 3.333007538183169, test acc 76.5909090909091
epoch 4, batch_idx 0, loss 2.1602728366851807
epoch 4, batch_idx 200, loss 2.197911262512207
epoch 4, batch_idx 400, loss 2.252277135848999
epoch 4, batch_idx 600, loss 1.0814595222473145
epoch 4, test loss 1.9333787821233273, test acc 81.45454545454545
epoch 5, batch_idx 0, loss 1.5760024785995483
epoch 5, batch_idx 200, loss 1.5287736654281616
epoch 5, batch_idx 400, loss 1.3700907230377197
epoch 5, batch_idx 600, loss 0.9534137845039368
epoch 5, test loss 1.315996164964004, test acc 81.10795454545455
epoch 6, batch_idx 0, loss 0.9218883514404297
epoch 6, batch_idx 200, loss 0.6848210096359253
epoch 6, batch_idx 400, loss 1.218489646911621
epoch 6, batch_idx 600, loss 0.882542073726654
epoch 6, test loss 1.1296405287628823, test acc 82.9034090909091
epoch 7, batch_idx 0, loss 0.7222120761871338
epoch 7, batch_idx 200, loss 0.5594819188117981
epoch 7, batch_idx 400, loss 1.3399994373321533
epoch 7, batch_idx 600, loss 0.8152369260787964
epoch 7, test loss 1.0356671606952494, test acc 79.01704545454545
epoch 8, batch_idx 0, loss 0.5979047417640686
epoch 8, batch_idx 200, loss 0.5507006645202637
epoch 8, batch_idx 400, loss 0.6000616550445557
epoch 8, batch_idx 600, loss 0.48930785059928894
epoch 8, test loss 0.8429303023625504, test acc 82.9659090909091
epoch 9, batch_idx 0, loss 0.3913853168487549
epoch 9, batch_idx 200, loss 0.9501373767852783
epoch 9, batch_idx 400, loss 0.670101523399353
epoch 9, batch_idx 600, loss 0.793392539024353
epoch 9, test loss 0.8035464127632704, test acc 86.01704545454545
epoch 10, batch_idx 0, loss 0.33485880494117737
epoch 10, batch_idx 200, loss 0.4916546940803528
epoch 10, batch_idx 400, loss 0.6082847118377686
epoch 10, batch_idx 600, loss 0.8132975101470947
epoch 10, test loss 0.7464344034140761, test acc 86.0965909090909
epoch 11, batch_idx 0, loss 0.4020095765590668
epoch 11, batch_idx 200, loss 0.549713671207428
epoch 11, batch_idx 400, loss 0.5974748134613037
epoch 11, batch_idx 600, loss 0.5721868872642517
epoch 11, test loss 0.7183683966709808, test acc 86.48863636363636
epoch 12, batch_idx 0, loss 0.3971376419067383
epoch 12, batch_idx 200, loss 0.3680552840232849
epoch 12, batch_idx 400, loss 0.6100645661354065
epoch 12, batch_idx 600, loss 0.5566384196281433
epoch 12, test loss 0.6802440441467545, test acc 85.4659090909091
epoch 13, batch_idx 0, loss 0.4752316176891327
epoch 13, batch_idx 200, loss 0.42497631907463074
epoch 13, batch_idx 400, loss 0.5759319067001343
epoch 13, batch_idx 600, loss 0.6097909212112427
epoch 13, test loss 0.6569343952631409, test acc 86.55681818181819
epoch 14, batch_idx 0, loss 0.36898481845855713
epoch 14, batch_idx 200, loss 0.42660871148109436
epoch 14, batch_idx 400, loss 0.5741548538208008
epoch 14, batch_idx 600, loss 0.5197790861129761
epoch 14, test loss 0.7259972247887742, test acc 86.67613636363636
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
95 3
|
2月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
185 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
2月前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
57 5
|
3月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
87 1
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】43. 算法优化之Adam算法【RMSProp算法与动量法的结合】介绍及其Pytorch实现
【从零开始学习深度学习】43. 算法优化之Adam算法【RMSProp算法与动量法的结合】介绍及其Pytorch实现
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】40. 算法优化之AdaGrad算法介绍及其Pytorch实现
【从零开始学习深度学习】40. 算法优化之AdaGrad算法介绍及其Pytorch实现
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
4月前
|
人工智能 算法 安全
深度讲解-互联网算法备案指南和教程
随着人工智能和大数据技术的发展,互联网算法在内容推荐、用户画像等领域日益重要,但也带来了安全风险和合规挑战。国家互联网信息办公室为此发布了《互联网算法备案管理规定》,要求具有舆论属性或社会动员能力的互联网信息服务提供者进行算法备案,以确保算法透明性和合规性,维护网络健康秩序。唯安创远AI合规专家将解析备案的必要性、流程及其对企业的影响,帮助企业顺利完成备案。
328 3
|
3月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
88 0
|
3月前
|
机器学习/深度学习 传感器 算法
Pytorch-Adam算法解析
肆十二在B站分享深度学习实战教程,本期讲解Adam优化算法。Adam结合了AdaGrad和RMSProp的优点,通过一阶和二阶矩估计,实现自适应学习率,适用于大规模数据和非稳态目标。PyTorch中使用`torch.optim.Adam`轻松配置优化器。
68 0