【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】

简介: 【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】

1. 梯度下降、随机梯度下降、小批量随机梯度下降区别

梯度下降:在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,一个epoch周期内参数只更新一次。

随机梯度下降:在每次迭代中,只随机采样一个样本来计算梯度,一个epoch周期内会进行样本数目次参数更新。

小批量随机梯度下降:在每次迭代中随机均匀采样多个样本来组成一个小批量来计算梯度,一个epoch周期内会进行(样本数目/批量大小)次的参数更新。

2. 读取训练数据

获取数据集方法,关注GZH:阿旭算法与机器学习,回复“梯度下降”即可。

该数据集为NASA的测试不同飞机机翼噪音的数据集,数据集一共包含1503个样本,每个样本包含5个特征与1个标签,下面我们将使用该数据集的前1,500个样本进行模型的训练,并比较各个优化算法的区别。

数据集展示:

%matplotlib inline
import numpy as np
import time
import torch
from torch import nn, optim
import sys
import d2lzh_pytorch as d2l
def get_data_ch7():  
    data = np.genfromtxt('./data/airfoil_self_noise.dat', delimiter='\t')
    # 标准化数据
    data = (data - data.mean(axis=0)) / data.std(axis=0)
    return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
    torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本包含5个特征)
features, labels = get_data_ch7()
features.shape # torch.Size([1500, 5])

3. 从零实现3种梯度算法并进行训练

下面实现一个通用的训练函数,它初始化一个线性回归模型,然后可以使用梯度下降、随机梯度下降和小批量随机梯度下降算法来训练模型。

# 参数优化器
def sgd(params, states, hyperparams):
    for p in params:
        p.data -= hyperparams['lr'] * p.grad.data
# 训练函数        
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
              batch_size=10, num_epochs=2):
    # 初始化模型,初始化一个线性回归模型
    net, loss = d2l.linreg, d2l.squared_loss
    
    w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
                           requires_grad=True)
    b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)
    def eval_loss():
        return loss(net(features, w, b), labels).mean().item()
    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
    
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            l = loss(net(X, w, b), y).mean()  # 使用平均损失
            
            # 梯度清零
            if w.grad is not None:
                w.grad.data.zero_()
                b.grad.data.zero_()
                
            l.backward()
            optimizer_fn([w, b], states, hyperparams)  # 迭代模型参数
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())  # 每100个样本记录下当前训练误差
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')

3.1 梯度下降训练结果

当批量大小为样本总数1,500时,使用的是梯度下降。梯度下降的1个迭代周期对模型参数只迭代1次。可以看到6次迭代后目标函数值(训练损失)的下降趋向了平稳。

def train_sgd(lr, batch_size, num_epochs=2):
    train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)
train_sgd(1, 1500, 6)

输出:

loss: 0.245426, 0.013536 sec per epoch

3.2 随机梯度下降将结果

当批量大小为1时,优化使用的是随机梯度下降。随机梯度下降中,每处理一个样本会更新一次自变量(模型参数),一个迭代周期里会对自变量进行1,500次更新。可以看到,目标函数值的下降在1个迭代周期后就变得较为平缓。

train_sgd(0.005, 1)

输出:

loss: 0.246051, 0.531435 sec per epoch

虽然随机梯度下降和梯度下降在一个迭代周期里都处理了1,500个样本,但实验中随机梯度下降的一个迭代周期耗时更多。这是因为随机梯度下降在一个迭代周期里做了更多次的自变量迭代,而且单样本的梯度计算难以有效利用矢量计算。

3.3 小批量随机梯度下降结果

当批量大小为10时,优化使用的是小批量随机梯度下降。它在每个迭代周期的耗时介于梯度下降和随机梯度下降的耗时之间。

train_sgd(0.05, 10)

输出:

loss: 0.242805, 0.078792 sec per epoch

4 .使用Pytorch的optim.SGD实现梯度下降优化算法

在PyTorch里可以直接通过创建optimizer实例来调用优化算法。这能让实现更简洁。下面实现一个通用的训练函数,它通过优化算法的函数optimizer_fn和超参数optimizer_hyperparams来创建optimizer实例。

def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,
                    batch_size=10, num_epochs=2):
    # 初始化模型
    net = nn.Sequential(
        nn.Linear(features.shape[-1], 1)
    )
    loss = nn.MSELoss()
    optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams)
    def eval_loss():
        return loss(net(features).view(-1), labels).item() / 2
    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            # 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2
            l = loss(net(X).view(-1), y) / 2 
            
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')

下面重复第3小节中的实验。

4.1 梯度下降训练结果

train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=1500, num_epochs=6)

输出:

loss: 0.701703, 0.013035 sec per epoch

4.2 随机梯度下降将结果

train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=1, num_epochs=2)

输出:

loss: 0.288860, 0.586868 sec per epoch

4.3 小批量随机梯度下降结果

train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, batch_size=10, num_epochs=2)

输出:

loss: 0.242063, 0.075203 sec per epoch

5. 总结

  • 小批量随机梯度每次随机均匀采样一个小批量的训练样本来计算梯度。
  • 通常,小批量随机梯度在每个迭代周期的耗时介于梯度下降和随机梯度下降的耗时之间。
相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
218 55
|
2天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
24天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
104 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
53 7
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
102 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型