干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)

简介: 干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)

tensorflow的安装与配置

TensorFlow是谷歌研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。

TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域。是一个开源的、基于 Python 的机器学习框架。下面我们先讲述如何配置tensorflow的开发环境。

首先强调一点,在python环境下安装tensorflow,必须做到版本的匹配。如果你的电脑上装了多个python版本,则很容易因为版本问题造成安装的失败。最好卸载不需要的python,使用Anacoda自带的python。

下载安装Anacoda

输入网址https://www.anaconda.com/distribution/,如图所示,选择python3.7版本下载:

微信图片_20220423105934.jpg

下载安装后,点击开始,找到Anacoda3文件,选择Anacoda Prompt,输入python,会显示python版本,即安装成功。

微信图片_20220423105936.jpg

或者在cmd中输入pip list,如图,即安装成功。

微信图片_20220423105939.jpg

建立tensorflow虚拟环境

Step 1: 建立Anacoda(以下简称ana)与tensorflow、python 的关系,输入conda create --name tensorflow python=3.7

Step 2: 输入y,即开始建立虚拟环境。

这里注意版本问题,自己需要的python版本是哪个版本,这里需要写明确(即conda create --name tensorflow python= ??? )。一个ana在同一时间只能支持一个版本,每个版本对应的tensorflow 的版本不同。查询版本,即在ana prompt 中输入python。如果已经知道对应的tensorflow版本,可以直接conda create—name tensorflow版本,

Step 3: 安装tensorflow,在ana环境下,进入tensorflow的虚拟环境,输入conda activate

微信图片_20220423105942.png

注意一定要进入tensorflow 虚拟环境安装,输入conda install tensorflow 版本(我安装用的2.1.0),如图,即安装成功

微信图片_20220423105944.jpg

输入deactivate,退出虚拟环境。

Step 4: 安装完毕,可以在cmd的python状态下输入import tensorflow as tf来测试是否安装成功。

安装pycharm

Step 1: 下载安装Pycharm,进入官网:

http://www.jetbrains.com/pycharm/download/#section=windows

如图所示,推荐下载免费使用的社区版:

微信图片_20220423105947.jpg

Step 2: 配置pycharm 环境,进入pycharm,点击左上角File,找到Setting,点击Project 中的Project Interpreter,点击设置按钮,找到已安装包的路径,创建环境。创建完毕后,可以找到python库和tensorflow库。(图中很多为私人配置,不一样不要紧)

微信图片_20220423105949.jpg微信图片_20220423105953.jpg

Step 3: 安装opencv

方法一:Opencv在cmd环境中安装,输入pip install opencv-python,默认使用国外源文件,速度比较慢,能够成功,但大概率在下载过程中因为网络原因或者其他原因中断,如图

微信图片_20220423105956.jpg

方法二:在opencv的官网上下载好安装文件包再进行安装:

https://www.lfd.uci.edu/~gohlke/pythonlibs/

注意,要对应自己的python 和tensorflow版本,还有自己安装的电脑的位数来选择合适的安装包,方法是在出错的那句话中找到文件名,按照这个文件名去找安装包。

微信图片_20220423105958.jpg

进入网站后要疯狂往下拉,在很下面。

安装合适opencv文件后,在cmd环境下输入pip install 路径(\opencv_python-*.whl)

写命令代码时指明安装包的路径。安装完成后,在python环境下,输入import cv2,即可检验。

微信图片_20220423110001.jpg

另外有很多文献建议使用国内镜像网站安装opencv ,这里不建议,因为失败了很多次。

Step 4: 安装loguru,输入pip install loguru

微信图片_20220423110004.jpg

Tips:其实能顺利安装 tensorflow 并且在Python中正常使用不是件很容易的事情。特别指出的是,能正确导入tensorflow并不一定能正常使用,如果遇到同样的问题,请再次认真的检查你的python版本,tensorflow版本 和python中的环境配置。实在找不出原因,那就重新开始吧!我用了一周的时间解决安装中遇到的各种问题,步步惊心哦!

利用tensorflow建立神经网络(用后面贪吃蛇神经网络的模型为例)

Step 1: 导入tensorflow

import tensorflow as tf
from tensorflow.keras import layers

Step 2: 用模型堆叠构建模型

我们使用的最多的是层的堆叠,即tf.keras.Sequential模型,如下:

self.model = tf.keras.Sequential([
            tf.keras.layers.Dense(units=32, input_dim=self.input_shape,
            activation=tf.nn.relu),  #输入层
            tf.keras.layers.Dense(units=16, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=8, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=8, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=16, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=32, activation=tf.nn.relu),#隐藏层
            tf.keras.layers.Dense(units=self.output_size, activation=tf.keras.activations.linear) #输出层
        ])
  # activation 激活函数

下面图形是用激活函数微信图片_20220423110007.png

Step 3: 编译网络神经模型

self.model.compile(optimizer = tf.keras.optimizers.Adam(self.lr), loss='mse',metrics=['accuracy'])
#loss 损失函数

Step 4: 神经网络预测

self.model.predict(state, batch_size)
 # batch_size批次数据 整形

Step 5: 神经网络训练

model.fit(states, action_values, batch_size=batch_size, verbose=0, epochs=4)
相关文章
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
156 0
|
2月前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
149 6
|
2月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
2月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
178 0
|
3月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
205 0
|
8月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
10月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
277 21
|
11月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
238 11

热门文章

最新文章

推荐镜像

更多