干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)

简介: 干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)

tensorflow的安装与配置

TensorFlow是谷歌研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。

TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域。是一个开源的、基于 Python 的机器学习框架。下面我们先讲述如何配置tensorflow的开发环境。

首先强调一点,在python环境下安装tensorflow,必须做到版本的匹配。如果你的电脑上装了多个python版本,则很容易因为版本问题造成安装的失败。最好卸载不需要的python,使用Anacoda自带的python。

下载安装Anacoda

输入网址https://www.anaconda.com/distribution/,如图所示,选择python3.7版本下载:

微信图片_20220423105934.jpg

下载安装后,点击开始,找到Anacoda3文件,选择Anacoda Prompt,输入python,会显示python版本,即安装成功。

微信图片_20220423105936.jpg

或者在cmd中输入pip list,如图,即安装成功。

微信图片_20220423105939.jpg

建立tensorflow虚拟环境

Step 1: 建立Anacoda(以下简称ana)与tensorflow、python 的关系,输入conda create --name tensorflow python=3.7

Step 2: 输入y,即开始建立虚拟环境。

这里注意版本问题,自己需要的python版本是哪个版本,这里需要写明确(即conda create --name tensorflow python= ??? )。一个ana在同一时间只能支持一个版本,每个版本对应的tensorflow 的版本不同。查询版本,即在ana prompt 中输入python。如果已经知道对应的tensorflow版本,可以直接conda create—name tensorflow版本,

Step 3: 安装tensorflow,在ana环境下,进入tensorflow的虚拟环境,输入conda activate

微信图片_20220423105942.png

注意一定要进入tensorflow 虚拟环境安装,输入conda install tensorflow 版本(我安装用的2.1.0),如图,即安装成功

微信图片_20220423105944.jpg

输入deactivate,退出虚拟环境。

Step 4: 安装完毕,可以在cmd的python状态下输入import tensorflow as tf来测试是否安装成功。

安装pycharm

Step 1: 下载安装Pycharm,进入官网:

http://www.jetbrains.com/pycharm/download/#section=windows

如图所示,推荐下载免费使用的社区版:

微信图片_20220423105947.jpg

Step 2: 配置pycharm 环境,进入pycharm,点击左上角File,找到Setting,点击Project 中的Project Interpreter,点击设置按钮,找到已安装包的路径,创建环境。创建完毕后,可以找到python库和tensorflow库。(图中很多为私人配置,不一样不要紧)

微信图片_20220423105949.jpg微信图片_20220423105953.jpg

Step 3: 安装opencv

方法一:Opencv在cmd环境中安装,输入pip install opencv-python,默认使用国外源文件,速度比较慢,能够成功,但大概率在下载过程中因为网络原因或者其他原因中断,如图

微信图片_20220423105956.jpg

方法二:在opencv的官网上下载好安装文件包再进行安装:

https://www.lfd.uci.edu/~gohlke/pythonlibs/

注意,要对应自己的python 和tensorflow版本,还有自己安装的电脑的位数来选择合适的安装包,方法是在出错的那句话中找到文件名,按照这个文件名去找安装包。

微信图片_20220423105958.jpg

进入网站后要疯狂往下拉,在很下面。

安装合适opencv文件后,在cmd环境下输入pip install 路径(\opencv_python-*.whl)

写命令代码时指明安装包的路径。安装完成后,在python环境下,输入import cv2,即可检验。

微信图片_20220423110001.jpg

另外有很多文献建议使用国内镜像网站安装opencv ,这里不建议,因为失败了很多次。

Step 4: 安装loguru,输入pip install loguru

微信图片_20220423110004.jpg

Tips:其实能顺利安装 tensorflow 并且在Python中正常使用不是件很容易的事情。特别指出的是,能正确导入tensorflow并不一定能正常使用,如果遇到同样的问题,请再次认真的检查你的python版本,tensorflow版本 和python中的环境配置。实在找不出原因,那就重新开始吧!我用了一周的时间解决安装中遇到的各种问题,步步惊心哦!

利用tensorflow建立神经网络(用后面贪吃蛇神经网络的模型为例)

Step 1: 导入tensorflow

import tensorflow as tf
from tensorflow.keras import layers

Step 2: 用模型堆叠构建模型

我们使用的最多的是层的堆叠,即tf.keras.Sequential模型,如下:

self.model = tf.keras.Sequential([
            tf.keras.layers.Dense(units=32, input_dim=self.input_shape,
            activation=tf.nn.relu),  #输入层
            tf.keras.layers.Dense(units=16, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=8, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=8, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=16, activation=tf.nn.relu),
            tf.keras.layers.Dense(units=32, activation=tf.nn.relu),#隐藏层
            tf.keras.layers.Dense(units=self.output_size, activation=tf.keras.activations.linear) #输出层
        ])
  # activation 激活函数

下面图形是用激活函数微信图片_20220423110007.png

Step 3: 编译网络神经模型

self.model.compile(optimizer = tf.keras.optimizers.Adam(self.lr), loss='mse',metrics=['accuracy'])
#loss 损失函数

Step 4: 神经网络预测

self.model.predict(state, batch_size)
 # batch_size批次数据 整形

Step 5: 神经网络训练

model.fit(states, action_values, batch_size=batch_size, verbose=0, epochs=4)
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
143 55
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
44 0
|
24天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
31 0
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
112 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
15天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
10天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
130 10
|
17天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
65 9
|
20天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
23天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
48 2