图解大数据 | GraphFrames @基于图的数据分析挖掘

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: GraphFrames库构建在DataFrame之上,具备DataFrame强大的性能,也提供了统一的图处理API。本文讲解GraphFrames的构建使用,包括query与数据分析、图中点与边的计算、图入度与出度的应用等。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/84
本文地址http://www.showmeai.tech/article-detail/182
声明:版权所有,转载请联系平台与作者并注明出处

收藏ShowMeAI查看更多精彩内容


1.GraphFrames介绍

由Databricks、UC Berkeley以及MIT联合为Apache Spark开发了一款图处理类库,名为GraphFrames。该类库构建在DataFrame之上,既能利用DataFrame良好的扩展性和强大的性能,同时也为Scala、Java和Python提供了统一的图处理API。

1) Spark对图计算的支持

Spark从最开始的关系型数据查询,到图算法实现,到GraphFrames库可以完成图查询。

Spark GraphFrames; 基于图的数据分析挖掘; GraphFrames介绍; Spark对图计算的支持; 16-1

2) GraphFrames的优势

GraphFrames是类似于Spark的GraphX库,支持图处理。但GraphFrames建立在Spark DataFrame之上,具有以下重要的优势:

  • 支持Scala,Java 和Python AP:GraphFrames提供统一的三种编程语言APIs,而GraphX的所有算法支持Python和Java。
  • 方便、简单的图查询:GraphFrames允许用户使用Spark SQL和DataFrame的API查询。
  • 支持导出和导入图:GraphFrames支持DataFrame数据源,使得可以读取和写入多种格式的图,比如Parquet、JSON和CSV格式。

2.构建GraphFrames

以航班分析为例,我们需要构建GraphFrames:

  • ① 先把数据读取成DataFrame。
  • ② 再通过DataFrame查询,构建出点和边。
  • ③ 再通过点和边构建GraphFrames。

Spark GraphFrames; 基于图的数据分析挖掘; 构建GraphFrames; 构建点和边 → 构建GraphFrames; 16-2

# Create Vertices (airports) and Edges (flights)
tripVertices=airports.withColumnRenamed("IATA","id").distinct()
tripEdges=departureDelays
   .select("tripid","delay","src","dst","city_dst","state_dst")

# This GraphFrame builds upon the vertices and edges based on our trips (flights)
tripGraph=GraphFrame(tripVertices, tripEdges)

3.简单query与数据分析

1) 查询机场个数和行程个数

Spark GraphFrames; 基于图的数据分析挖掘; 简单query与数据分析; 查询机场/行程个数; 16-3

# 查询机场个数和行程个数(查询节点和边的个数)
print("Airports:", tripGraph.vertices.count())
print("Trips:", tripGraph.edges.count())

2) 查询最长的航班延迟

Spark GraphFrames; 基于图的数据分析挖掘; 简单query与数据分析; 查询最长的航班延迟; 16-4

# 查询最长延误时间(通过分组统计完成)
longestDelay = tripGraph.edges.groupby().max("delay")

3) 晚点与准点航班分析

Spark GraphFrames; 基于图的数据分析挖掘; 简单query与数据分析; 晚点与准点航班分析; 16-5

# 晚点与准点航班分析(通过数据选择与过滤,进行边的分析)
print "On-time / Early Flights: %d" % tripGraph.edges.filter("delay <= 0").count()
print "Delayed Flights: %d" % tripGraph.edges.filter("delay > 0").count()

4)从旧金山出发的飞机中延迟最严重的航班

Spark GraphFrames; 基于图的数据分析挖掘; 简单query与数据分析; 从旧金山出发的飞机中延迟最严重的航班; 16-6

# 从旧金山出发的飞机中延迟最严重的航班(数据选择+边分析+分组统计)
tripGraph.edges.filter(“src = ‘SFO’ and delay > 0”).groupBy(“src”, “dst”).avg(“delay”).sort(desc(“avg(delay)”))

4.图中点与边相关计算

1) 图中度的分析

在航班案例中:入度:抵达本机场的航班数量;出度:从本机场出发的航班数量;度:连接数量。

Spark GraphFrames; 基于图的数据分析挖掘; 图中点与边相关计算; 图中度的分析; 16-7

display(tripGraph.degrees.sort(desc("degree")).limit(20))

2) 图中边的分析

边的分析,通常是对成对的数据进行统计分析的

Spark GraphFrames; 基于图的数据分析挖掘; 图中点与边相关计算; 图中边的分析; 16-8

import pyspark.sql.functions as func 
topTrips = tripGraph.edges.groupBy("src", "dst").agg(func.count("delay").alias("trips"))

5.图入度与出度相关应用

1) 入度出度对图进一步分析

通过入度和出度分析中转站:入度/出度≈1,中转站;入度/出度>1,出发站;入度/出度<1,抵达站。

Spark GraphFrames; 基于图的数据分析挖掘; 图入度与出度相关应用; 入度出度; 对图进一步分析; 16-9

Spark GraphFrames; 基于图的数据分析挖掘; 图入度与出度相关应用; 入度出度; 对图进一步分析; 16-10

# Calculate the inDeg (flights into the airport) and outDeg (flights leaving the airport) 
inDeg = tripGraph.inDegrees 
outDeg = tripGraph.outDegrees 

# Calculate the degreeRatio (inDeg/outDeg) 
degreeRatio = inDeg.join(outDeg, inDeg.id == outDeg.id).drop(outDeg.id).selectExpr("id", "double(inDegree)/double(outDegree) as degreeRatio").cache() 

# Join back to the `airports` DataFrame (instead of registering temp table as above) 
nonTransferAirports = degreeRatio.join(airports, degreeRatio.id == airports.IATA) \ 
    .selectExpr("id", "city", "degreeRatio").filter("degreeRatio < .9 or degreeRatio > 1.1") 

# List out the city airports which have abnormal degree ratios. 
display(nonTransferAirports)

Spark GraphFrames; 基于图的数据分析挖掘; 图入度与出度相关应用; 入度出度; 对图进一步分析; 16-11

# Join back to the `airports` DataFrame (instead of registering temp table as above) 
transferAirports = degreeRatio.join(airports, degreeRatio.id == airports.IATA) \ 
    .selectExpr("id", "city", "degreeRatio").filter("degreeRatio between 0.9 and 1.1") 

# List out the top 10 transfer city airports 
display(transferAirports.orderBy("degreeRatio").limit(10))

2) 广度优先搜索

通过广度优先搜索,可以对图中的两个点进行关联查询:比如我们查询从旧金山到布法罗,中间有一次中转的航班。

Spark GraphFrames; 基于图的数据分析挖掘; 图入度与出度相关应用; 广度优先搜索; 16-12

Spark GraphFrames; 基于图的数据分析挖掘; 图入度与出度相关应用; 广度优先搜索; 16-13

# Example 1: Direct Seattle to San Francisco 
filteredPaths = tripGraph.bfs(fromExpr = "id = 'SEA'", toExpr = "id = 'SFO'", maxPathLength = 1) 
display(filteredPaths) 

# Example 2: Direct San Francisco and Buffalo 
filteredPaths = tripGraph.bfs(fromExpr = "id = 'SFO'", toExpr = "id = 'BUF'", maxPathLength = 1) 
display(filteredPaths) 

# Example 2a: Flying from San Francisco to Buffalo 
filteredPaths = tripGraph.bfs(fromExpr = "id = 'SFO'", toExpr = "id = 'BUF'", maxPathLength = 2) 
display(filteredPaths)

6.Pagerank算法与相关应用

可以通过pagerank算法进行机场排序:每个机场都会作为始发站和终点站很多次,可以通过pagerank算法对其重要度进行排序。

Spark GraphFrames; 基于图的数据分析挖掘; Pagerank算法应用; 重要度排序; 16-14

# Determining Airport ranking of importance using `pageRank` 
ranks = tripGraph.pageRank(resetProbability=0.15, maxIter=5) 
display(ranks.vertices.orderBy(ranks.vertices.pagerank.desc()).limit(20))

参考资料

【大数据技术与处理】推荐阅读

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
16天前
|
数据采集 人工智能 算法
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
数据没洗干净,分析全白干:聊聊大数据里的“洗澡水”工程
34 1
|
2月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
6月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
362 92
|
3月前
|
机器学习/深度学习 数据采集 算法
如何用大数据与机器学习挖掘瞪羚企业认定标准
本文探讨如何利用大数据与机器学习技术挖掘瞪羚企业认定标准。通过阿里云的大数据平台和政策宝资源整合能力,结合机器学习算法分析政策文本,提取关键信息,助力企业精准理解认定标准。文章对比了传统获取方式的局限性与新技术的优势,并以案例说明政策宝在申报中的作用,强调数据整合、模型选择及数据安全的重要性,为企业提供发展方向和政策支持。
|
4月前
|
存储 弹性计算 分布式计算
云端智链:挖掘云计算中的大数据潜能
云端智链:挖掘云计算中的大数据潜能
94 21
|
10月前
|
数据挖掘 PyTorch TensorFlow
|
5月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
6月前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
141 9
|
8月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
9月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
100 1

热门文章

最新文章