python机器学习实现oneR算法 以鸢尾data为例

简介: python机器学习实现oneR算法 以鸢尾data为例

oneR即“一条规则”。oneR算法根据已有的数据中,具有相同特征值的个体最可能属于哪个类别来进行分类。
以鸢尾data为例,该算法实现过程可解读为以下六步:



在这里插入图片描述

一、 导包与获取数据

以均值为阈值,将大于或等于阈值的特征标记为1,低于阈值的特征标记为0。

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from collections import defaultdict
from operator import itemgetter
import warnings
from sklearn.metrics import classification_report

# 加载内置iris数据,并保存
dataset = load_iris()  
X = dataset.data
y = dataset.target

attribute_means = X.mean(axis=0)  # 得到一个列表,列表元素个数为特征值个数,列表值为每个特征的均值
X_d = np.array(X >= attribute_means, dtype='int')  # 转bool类型

数据到此已获取完毕,接下来将其划分为训练集和测试集。

二、划分为训练集和测试集

使用默认的0.25作为分割比例。即训练集:测试集=3:1。

X_train, X_test, y_train, y_test = train_test_split(X_d, y, random_state=random_state)

数据描述:
本例中共有四个特征,
原数据集有150个样本,分割后训练集有112个数据,测试集有38个数据。
标签一共分为三类,取值可以是0,1,2。

三、定义函数:获取某特征值出现次数最多的类别及错误率

首先遍历特征的每一个取值,对于每一个特征值,统计它在各个类别中出现的次数。
定义一个函数,有以下四个参数:

  • X, y_true即 训练集数据和标签
  • feature是特征的索引值,可以是0,1,2,3。
  • value是特征可以有的取值,这里为0,1。

该函数的意义在于,对于训练集数据,对于某个特征,依次遍历样本在该特征的真实取值,判断其是否等于特征的某个可以有的取值 (即value)(以0为例)。如果判定成功,则在字典class_counts中记录,以三个类别(0,1,2)中该样本对应的类别为键值,表示该类别出现的次数加一。

首先得到的字典(class_counts)形如:
{0: x1, 1.0: x2, 2.0:x3}
其中元素不一定是三个
x1:类别0中,某个特征feature的特征值为value(0或1)出现的次数
x2:类别0中,某个特征feature的特征值为value(0或1)出现的次数
x3:类别0中,某个特征feature的特征值为value(0或1)出现的次数

然后将class_counts按照值的大小排序,取出指定特征的特征值出现次数最多的类别:most_frequent_class。
该规则即为:该特征的该特征值出现在其出现次数最多的类别上是合理的,出现在其它类别上是错误的。

最后计算该规则的错误率:error
错误率具有该特征的个体在除出现次数最多的类别出现的次数,代表分类规则不适用的个体的数量

最后返回待预测的个体类别错误率

def train_feature_value(X, y_true, feature, value):
    class_counts = defaultdict(int)
    for sample, y_t in zip(X, y_true):
        if sample[feature] == value:
            class_counts[y_t] += 1
    sorted_class_counts = sorted(class_counts.items(), key=itemgetter(1), reverse=True) # 降序
    most_frequent_class = sorted_class_counts[0][0]
    error = sum([class_count for class_value, class_count in class_counts.items()
                 if class_value != most_frequent_class])
    return most_frequent_class, error

返回值most_frequent_class是一个字典, error是一个数字

四、定义函数:获取每个特征值下出现次数最多的类别、错误率

def train(X, y_true, feature):
    n_samples, n_features = X.shape
    assert 0 <= feature < n_features
    # 获取样本中某特征所有可能的取值
    values = set(X[:, feature])
    predictors = dict()
    errors = []
    for current_value in values:
        most_frequent_class, error = train_feature_value(X, y_true, feature, current_value)
        predictors[current_value] = most_frequent_class
        errors.append(error)
    total_error = sum(errors)
    return predictors, total_error

因为most_frequent_class是一个字典,所以predictors是一个键为特征可以的取值(0和1),值为字典most_frequent_class的 字典。
total_error是一个数字,为每个特征值下的错误率的和。

五、调用函数,获取最佳特征值

all_predictors = {
    variable: train(X_train, y_train, variable) for variable in range(X_train.shape[1])}
Errors = {
    variable: error for variable, (mapping, error) in all_predictors.items()}
# 找到错误率最低的特征
best_variable, best_error = sorted(Errors.items(), key=itemgetter(1))[0]  # 升序
print("The best model is based on feature {0} and has error {1:.2f}".format(best_variable, best_error))
# 找到最佳特征值,创建model模型
model = {
    'variable': best_variable,
         'predictor': all_predictors[best_variable][0]}
print(model)

在这里插入图片描述
根据代码运行结果,最佳特征值是特征2(索引值为2的feature,即第三个特征)。

对于初学者这里的代码逻辑比较复杂,可以对变量进行逐个打印查看,阅读blog学习时要盯准字眼,细品其逻辑。

print(all_predictors)
print(all_predictors[best_variable])
print(all_predictors[best_variable][0])

在这里插入图片描述

六、测试算法

定义预测函数,对测试集数据进行预测

def predict(X_test, model):
    variable = model['variable']
    predictor = model['predictor']
    y_predicted = np.array([predictor[int(sample[variable])] for sample in X_test])
    return y_predicted

# 对测试集数据进行预测
y_predicted = predict(X_test, model)
print(y_predicted)

预测结果:
在这里插入图片描述

# 统计预测准确率
accuracy = np.mean(y_predicted == y_test) * 100
print("The test accuracy is {:.1f}%".format(accuracy))

在这里插入图片描述
根据打印结果,该模型预测的准确率可达65.8%,对于只有一条规则的oneR算法而言,结果是比较良好的。到此便实现了oneR算法的一次完整应用。


最后,还可以使用classification_report()方法,传入测试集的真实值和预测值,打印出模型评估报告。

# 屏蔽警告
warnings.filterwarnings("ignore") 
# 打印模型评估报告
print(classification_report(y_test, y_predicted))  # 参数为测试集的真实数据和预测数据

在这里插入图片描述

小啾祝您学习顺利!

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
141 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
72 2
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
147 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
59 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
80 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
164 4
|
18天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
126 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
8天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
41 14