我用Python爬虫爬取并分析了C站前100用户最高访问的2000篇文章

简介: 我用Python爬虫爬取并分析了C站前100用户最高访问的2000篇文章

写在前面

最近系统地学习了正则表达式,发现正则表达式最大的应用之一——网络爬虫之前一直没有涉猎,遂借此契机顺带写一个爬虫的demo备用。选择对象是CSDN排行榜前100用户,各自按访问量从高到低排序的前20篇文章,使用一些简单的数据分析手段看看技术热点,方便今后拓宽技术栈。

项目总述

主要爬取的数据是文章标题和访问量,先总体可视化总体文章的技术关键词;然后按访问量分组,可视化每个访问段的技术热点。

数据爬取

获得服务器API

首先我们要知道通过什么接口可以获得网站数据:首先进入博客总榜,按F12进入控制台,选中Network选项卡监视网络请求,然后刷新网页。从下图可以看到在API"https://blog.csdn.net/phoenix/web/blog/all-rank?page=1&pageSize=20"中我们可以拿到我们想要的用户信息——主要是用户名


image.png

现在到用户博客首页,同样地,按F12进入控制台,选中Network选项卡监视网络请求,然后点击按访问量排序,则可以发现另一个关键APIhttps://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={},如下图所示。


image.png

我们与服务器的交互就依靠这两个API进行。

程序总体设计

思考一下,我们总共有如下的公共变量:

# 请求头
headers = {
            'User-Agent':
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
        }
# 排行榜url
rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20"
# 按访问量排行的文章列表
mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}"
userNames =[] # 用户名列表
titleList = []  # 文章标题列表
viewCntList = [] # 访问量列表

为便于管理,引入一个类进行爬虫,专门负责与服务器进行数据交互

class GetInfo:
    def __init__(self) -> None:
        # 请求头
        self.headers = {
            'User-Agent':
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
        }
        # 排行榜url
        self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20"
        # 按访问量排行的文章列表
        self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}"
        self.userNames = []
        self.titleList, self.viewCntList = [], []

交互完成后,再使用别的库进行数据分析,将两个过程分离开

用户名爬取

定义一个私有的初始化函数

def __initRankUsrName(self):
    usrNameList = []
    for i in range(5):
        response = requests.get(url=self.rankUrl.format(i),
                                headers=self.headers)
        response.encoding = 'utf-8'
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        information = json.loads(str(soup))
        for item in information['data']['allRankListItem']:
            usrNameList.append(item['userName'])
    return usrNameList

这里获取用户名主要是为了动态生成第二个API

文章爬取

再定义一个私有函数,输入参数是用户名列表:

def __initArticalInfo(self, usrList):
    titleList = []
    viewCntList = []
    for name in usrList:
        url = self.mostViewArtical.format(name)
        # print(url)
        response = requests.get(url=url, headers=self.headers)
        response.encoding = 'utf-8'
        response.raise_for_status()
        titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text))
        viewCntList.extend(re.findall(r"\"viewCount\":(.*?),", response.text))
    return titleList, viewCntList

这里我使用正则表达式直接处理字符串,并返回文章标题列表、访问量列表。可以随便访问一个API做实验,这里以我的用户名为例,可以看到要获取文章标题就是以\"title\":\"(.*?)\"去匹配,其中\用于转义;要获取访问量就是以\"viewCount\":(.*?),去匹配,访问数字没有加引号。


事实上,用正则匹配不需要将返回的字符串加载为Json字典,可能有更快的处理效率(但不如json灵活)


image.png

这个爬虫类就设计好了,完整代码如下:

class GetInfo:
    def __init__(self) -> None:
        # 请求头
        self.headers = {
            'User-Agent':
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
        }
        # 排行榜url
        self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20"
        # 按访问量排行的文章列表
        self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}"
        self.userNames = self.__initRankUsrName()
        self.titleList, self.viewCntList = self.__initArticalInfo(
            self.userNames)
    def __initArticalInfo(self, usrList):
        titleList = []
        viewCntList = []
        for name in usrList:
            url = self.mostViewArtical.format(name)
            # print(url)
            response = requests.get(url=url, headers=self.headers)
            response.encoding = 'utf-8'
            response.raise_for_status()
            titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text))
            viewCntList.extend(
                re.findall(r"\"viewCount\":(.*?),", response.text))
        return titleList, viewCntList
    def __initRankUsrName(self):
        usrNameList = []
        for i in range(5):
            response = requests.get(url=self.rankUrl.format(i),
                                    headers=self.headers)
            response.encoding = 'utf-8'
            response.raise_for_status()
            soup = BeautifulSoup(response.text, 'html.parser')
            information = json.loads(str(soup))
            for item in information['data']['allRankListItem']:
                usrNameList.append(item['userName'])
        return usrNameList
info = GetInfo()

使用也很方便,只需要实例化调用其中的列表属性即可。

数据分析

数据存储

将文本数据存成csv格式,先设计表头:

if not os.path.exists("articalInfo.csv"):
    #创建存储csv文件存储数据
    with open('articalInfo.csv', "w", encoding="utf-8-sig", newline='') as f:
        csv_head = csv.writer(f)
        csv_head.writerow(['title', 'viewCnt'])

注意编码格式为utf-8-sig,否则会乱码

接下来存数据:

length = len(info.titleList)
for i in range(length):
    if info.titleList[i]:
        with open('articalInfo.csv', 'a+', encoding='utf-8-sig') as f:
            f.write(info.titleList[i] + ',' + info.viewCntList[i] + '\n')

总体数据可视化

新建一个模块专门用于可视化数据,与爬虫分离开,因为爬虫是慢IO过程,会影响调试效率,后面可以试试用协程来处理爬虫。

首先,把爬虫的信息读取到txt文件去

df = pd.read_csv('articalInfoNor.csv', encoding='utf-8-sig',usecols=['title', 'viewCnt'])
titleList = ','.join(df['title'].values)
with open('text.txt','a+', encoding='utf-8-sig') as f:
    f.writelines(titleList)

如何返回分词结果:

def getKeyWordText():
    # 读取文件信息
    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()
    return ' '.join(jieba.cut(file))

借助词云库可视化一下:

bg_pic = imread('2.jpg')
#生成词云
wordcloud = WordCloud(font_path=r'C:\Windows\Fonts\simsun.ttc',mask=bg_pic,background_color='white',scale=1.5).generate(text)
image_colors = ImageColorGenerator(bg_pic)
#显示词云图片
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
#保存图片
wordcloud.to_file('test.jpg')


image.png

这个大大的“的”是什么鬼?显然高频关键词里有太多语气助词、连接词,我们最好设置一个停用词列表把这些明显不需要的词屏蔽掉。我这里采用修饰器的方法让代码更简洁,关于修饰器的内容可以参考Python修饰器

def splitText(mode):
    stopWords = ["的","与","和","建议","收藏","使用","了","实现","我","中","你","在","之","年","月","日"]
    def warpper(func):
        def warp():
            textSplit = func()
            if mode:
                temp = [word for word in textSplit if word not in stopWords]
                return ' '.join(temp)
            else:
                return ' '.join(textSplit)
        return warp
    return warpper

当mode=True时启用屏蔽,否则关闭屏蔽,那么之前的函数应该修改为:

# 返回关键词文本
@splitText(False)
def getKeyWordText():
    # 读取文件信息
    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()
    return jieba.cut(file)

再来一次:


image.png

现在就正常多了。可以看到Python和Java是绝对的领先,之后是各位总结的方法论等等,算法的词频反而不高?

数据分组

我把数据进一步分层为

1、访问量>10W

2、访问量5W~10W

3、访问量1W~5W

4、访问量5K~1W

5、访问量5K以下

先来看看数据分布情况:


image.png

我猜如果分段分得再细一点可能趋于正态分布~

分组可视化看看:


image.png

>10W的词云


image.png

5~10W的词云


image.png

1~5W的词云


image.png

5k~1W的词云

感觉从这里开始更百花齐放一些,似乎也更关注具体问题的解决


image.png

5k以下的词云

不得不感叹python在每个阶段都是牌面

完整代码

import requests
from bs4 import BeautifulSoup
import os, json, re, csv
class GetInfo:
    def __init__(self) -> None:
        # 请求头
        self.headers = {
            'User-Agent':
            'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
        }
        # 排行榜url
        self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20"
        # 按访问量排行的文章列表
        self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}"
        self.userNames = self.__initRankUsrName()
        self.titleList, self.viewCntList = self.__initArticalInfo(
            self.userNames)
    def __initArticalInfo(self, usrList):
        titleList = []
        viewCntList = []
        for name in usrList:
            url = self.mostViewArtical.format(name)
            # print(url)
            response = requests.get(url=url, headers=self.headers)
            response.encoding = 'utf-8'
            response.raise_for_status()
            titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text))
            viewCntList.extend(
                re.findall(r"\"viewCount\":(.*?),", response.text))
        return titleList, viewCntList
    def __initRankUsrName(self):
        usrNameList = []
        for i in range(5):
            response = requests.get(url=self.rankUrl.format(i),
                                    headers=self.headers)
            response.encoding = 'utf-8'
            response.raise_for_status()
            soup = BeautifulSoup(response.text, 'html.parser')
            information = json.loads(str(soup))
            for item in information['data']['allRankListItem']:
                usrNameList.append(item['userName'])
        return usrNameList
info = GetInfo()
if not os.path.exists("articalInfo.csv"):
    #创建存储csv文件存储数据
    with open('articalInfo.csv', "w", encoding="utf-8-sig", newline='') as f:
        csv_head = csv.writer(f)
        csv_head.writerow(['title', 'viewCnt'])
length = len(info.titleList)
for i in range(length):
    if info.titleList[i]:
        with open('articalInfo.csv', 'a+', encoding='utf-8-sig') as f:
            f.write(info.titleList[i] + ',' + info.viewCntList[i] + '\n')
from wordcloud import WordCloud,ImageColorGenerator
import matplotlib.pyplot as plt
from imageio import imread
import jieba
import pandas as pd
from os import path
df = pd.read_csv('articalInfoCom.csv', encoding='utf-8-sig',usecols=['title', 'viewCnt'])
titleList = ','.join(df['title'].values)
with open('text.txt','a+', encoding='utf-8-sig') as f:
    f.writelines(titleList)
def splitText(mode):
    stopWords = ["的","与","和","建议","收藏","使用","了","实现","我","中","你","在","之","年","月","日"]
    def warpper(func):
        def warp():
            textSplit = func()
            if mode:
                temp = [word for word in textSplit if word not in stopWords]
                return ' '.join(temp)
            else:
                return ' '.join(textSplit)
        return warp
    return warpper
# 返回关键词文本
@splitText(True)
def getKeyWordText():
    # 读取文件信息
    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()
    return jieba.cut(file)
text = getKeyWordText()
#读取txt文件、背景图片
bg_pic = imread('2.jpg')
#生成词云
wordcloud = WordCloud(font_path=r'C:\Windows\Fonts\simsun.ttc',mask=bg_pic,background_color='white',scale=1.5).generate(text)
image_colors = ImageColorGenerator(bg_pic)
#显示词云图片
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
#保存图片
wordcloud.to_file('test.jpg')


目录
相关文章
|
25天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
83 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
61 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
26天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
231 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
16天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
83 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
79 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
69 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
28天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
30天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
3月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
189 6

热门文章

最新文章