python数据分析基础008 -利用pandas带你玩转excel表格(中下篇)

简介: python数据分析基础008 -利用pandas带你玩转excel表格(中下篇)

文章要点

image.png

🍺前言

image.png

🍁(一)利用pandas将excel中的数据绘制成可视化图形image.png

🔥1.在excel中实现image.pngimage.png要在python中实现上述在excel中的操作,该如何做呢?下面就让我们在python下实现吧!利用pandas和matplotlib绘制出来的图形更直观。

🔥2.在pandas中实现

  1. 导入pandas以及matplotlib模块
import pandas as pd
from matplotlib import pyplot as plt
  1. 读取excel表格数据,并将其进行排序
student_data = pd.read_excel('./excel/testpicture.xlsx')
df = pd.DataFrame(student_data)
# 对数据进行排序
df.sort_values(by=['2016','2017'],inplace=True,ascending=False)
  1. 绘制图形,并对x轴的说明进行调整
# 绘制条形图
df.plot.bar(x = 'Field',y = ['2016','2017'] , color = ['red', 'blue'])
# plt.xticks(rotation = 45,ha= 'right')
# 获取x轴,对x轴的说明进行调整,rotation表示倾斜的度数,ha表示水平旋转
ax = plt.gca()
ax.set_xticklabels(df['Field'] ,rotation = 45, ha = 'right')
  1. 设置xy轴以及标题的说明
# 设置xy轴的说明
plt.xlabel('field')
plt.ylabel('data of number')
# 加标题
plt.title("Student of Number" ,fontsize =20,color = 'green')
  1. 使图片完整显示(两种方法)
# 对于标签名字太长显示不全,可以用tight_layout()将标签在图中完全显示出来
# plt.tight_layout()
# 获取图形,调整图形与边缘的距离
picture= plt.gcf()
picture.subplots_adjust(left =0.5 ,bottom = 0.1)
  1. 保存及展示
plt.savefig('./excel.png')
plt.show()

结果:image.pngimage.pngimage.png

🍁(二)利用pandas实现多表联合1.python数据分析基础001 -matplotlib的基础绘图

在一个ecxel中可以有很多张表,通常这些表合并在一起又会生成一个新的数据。

实例:将这两张表的学生成绩打印出来image.pngimage.png

🔥1.在excel中实现

使用VLOOKUOP函数进行联合image.png📌注:在VLOOKUP中若是匹配不到数值,则会进行近似匹配,如上结果所示,21号学生成绩不存在,则近似匹配上一个的值。

若不想近似匹配则将默认值改为True。

=VLOOKUP(A2,Scores!A1:B21,2,FALSE)image.png若要显示为0,则需要用到IFNA函数。

image.png这样就完成了将两表联合查询到了学生的成绩。那么在pandas中该如何实现呢?

🔥2.在pandas中实现image.png

student = pd.read_excel('./excel/testone.xlsx',sheet_name='Students')
score = pd.read_excel('./excel/testone.xlsx',sheet_name='Scores')

image.png

import pandas as pd
student = pd.read_excel('./excel/testone.xlsx',sheet_name='Students')
score = pd.read_excel('./excel/testone.xlsx',sheet_name='Scores')
df_student = pd.DataFrame(student)
df_score = pd.DataFrame(score)
# how 表留左边表格数据,on按照id匹配,fillna将没有匹配到的值赋予0
# result = student.merge(score,how='left',on='ID').fillna(0)
result = student.merge(score,how='left',left_on='ID',right_on='ID').fillna(0)
# 修改Score的数据类型原本为float
result.Score = result.Score.astype(int)
print(result)

结果:

image.png

🍁(三)数据校验

在excel表格中,通常会有一些数据不符合我们的规范要求,从而导致我们的到的数据不准确,因此我们需要将他们筛选出来。那么我们该怎么做呢?

实例:将成绩不符合0-100的数据筛选出来image.png

🔥1.在excel表格中实现

image.png结果:image.png需要找出不符合的数据,在pandas中又如何操作呢?

🔥2.在pandas中实现image.png

import pandas as pd
def Score_false(x):
    if not 100>= x.Score >=0 :
        print("ID为{},姓名为:{}的学生成绩异常,成绩为:{}".format(x.ID,x.Name,x.Score))
score = pd.read_excel('./excel/testtwo.xlsx')
df = pd.DataFrame(score)
# axis=1则从行查询 axis=0则从列查询
df.apply(Score_false,axis=1)

结果:image.png

🍁(四)拆分列image.png

🔥1.在excel中实现image.png

那么在pandas中又如何实现呢?

🔥2.在pandas中实现image.png

import pandas as pd
test = pd.read_excel('./excel/testthree.xlsx')
df = pd.DataFrame(test)
name = df['Full Name'].str.split(expand = True)
df['firstname'] = name[0]
df['lastname'] = name[1]
print(df)

结果:image.png

🍻结语

相关文章
|
1月前
|
Java API Apache
Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
【10月更文挑战第29天】Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
117 5
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
67 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
88 0
|
7天前
|
数据可视化 数据处理 Python
使用Pandas实现Excel中的数据透视表功能
本文介绍了如何使用Python的Pandas库实现Excel中的数据透视表功能,包括环境准备、创建模拟销售数据、代码实现及输出等步骤。通过具体示例展示了按地区和销售员汇总销售额的不同方法,如求和、平均值、最大值等,帮助读者掌握Pandas在数据处理上的强大能力。
35 12
|
28天前
|
SQL 数据可视化 数据挖掘
想让Excel表格设计更美观?试试这几款好用工具!
Excel表格设计在项目管理和数据分析中至关重要。本文推荐四款辅助工具:板栗看板、Excel自动图表助手、Think-Cell Chart 和 Power BI,分别在任务管理、图表生成、数据可视化等方面表现突出,帮助你设计出更专业、美观的表格。
48 2
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
40 2
|
2月前
|
JavaScript 前端开发 数据处理
Vue导出el-table表格为Excel文件的两种方式
Vue导出el-table表格为Excel文件的两种方式
74 6
|
29天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
32 2
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
92 3