数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

简介: 数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

✨✨ 欢迎大家来到景天科技苑✨✨

🎈🎈 养成好习惯,先赞后看哦~🎈🎈

Streamlit

什么是streamlit

Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的数据科学Web应用程序。它是一个基于Python的库,专为机器学习工程师设计。

数据分析工程师不是网络开发人员,他们对花几周时间学习使用这些框架来构建网络应用程序不感兴趣。

相反,他们需要一个更容易学习和使用的工具,只要它可以显示数据并收集分析/建模所需的参数。Streamlit允许您仅用几行代码创建一个外观惊艳的应用程序。

数据科学家为何要使用Streamlit?

Streamlit最大的好处是,您甚至不需要了解Web开发的基础知识就可以开始或创建您的第一个Web应用程序。

因此,如果你是一个对数据科学感兴趣的人,你想轻松、快速地部署你的模型,并且只需要几行代码,Streamlit是一个很好的选择。

优势:

  • 不需要具备前端知识即可应用streamlit。
  • 学习成本极低
  • 你不需要花费几天或几个月的时间来创建一个Web应用,你可以在几个小时甚至几分钟内创建一个非常漂亮的机器学习或数据科学应用。
  • 它兼容大多数Python库
  • 例如panda、matplotlib、seaborn、plotly、Keras、PyTorch等。

环境安装

pip install streamlit

#测试安装是否正常:

streamlit hello
 

随便输入个邮箱,即可显示出访问url

程序运行

streamlit run xxx.py

具体操作

1.write()函数

可以通过该函数向看板上输出显示指定内容,每一个write函数,单独占一行显示

import pandas as pd
import streamlit as st

st.write("1. write()函数基本操作")
#展示表格

st.write(pd.DataFrame({
    '第一列': [1,2,3,4,5],
    '第二列': [6,7,8,9,10]}
))

运行:

在浏览器查看:

直接出图表,是不是很方便!!!

2.滑块组件slider

“slider"的中文意思是"滑块”。它是一种用户界面元素,通常用于选择一个数值范围或从给定选项中选择一个值。

滑块的外观通常是一个可拖动的滑块,用户可以通过移动滑块来选择所需的值。

滑块可以在许多应用程序和网页中使用,例如调整音量、选择年龄范围或设置某个参数的值。

import streamlit as st

st.write("st.slider()滑块")
#slider参数为滑块自定义名称,返回值为滑动到的数值
num = st.slider("num")
st.write(num, "squred is", num*num)

运行程序,浏览器展示

3.文本框操作text_input

页面显示输入文本框,看下参数

import streamlit as st

st.write("文本框操作")
#文本框输入,回车结束
st.text_input("your name", key="name")
st.text_input("your age", key="age")

# 显示输入的值,根据key键来获取
st.write(st.session_state.name,st.session_state.age)

运行程序,浏览器展示

4.多选框checkbox

import streamlit as st
import pandas as pd
import numpy as np

st.write("checkbox()多选框")
# 点击checkbox后返回True,未点击为False
ex1 = st.checkbox('显示/不显示 表格')
if ex1:
    df = pd.DataFrame(
        np.random.randn(20, 3),
        columns=['a', 'b', 'c']
    )
    st.write(df)

ex2 = st.checkbox('显示/不显示 滑块')
if ex2:
    x = st.slider('x')
    st.write(x)

运行程序,浏览器展示

5.下拉框selectbox

import streamlit as st

#返回值为选中的内容信息
option = st.selectbox(
    label='请选择省份信息:',
    options=['河北','山东','河南','吉林']
)

st.write("您选择的是: ", option)

6.侧边栏sidebar

st.sidebar.后面跟侧边栏显示的内容组件

import streamlit as st

#侧边栏下拉框
add_selectbox = st.sidebar.selectbox(
    label="通讯方式选项",
    options=('微信','QQ','手机','邮件')
)
#获取下拉选项
st.write("下拉选项: ", add_selectbox)

#侧边栏滑块
add_slider = st.sidebar.slider(
    label="选择一个范围的值",
    min_value=0.0, max_value=100.0, value=(25.0, 75.0)
)
#获取滑块的值
st.write("值的范围: ", add_slider)

7.单选按钮radio

import streamlit as st

# st.columns参数表示列数,表示要在页面展示的列数
left_column, right_column = st.columns(2)  #显示两列布局容器
# 左边列设置,使用with
with left_column:
    # 返回值为选中的选项值
    chosen = st.radio(
        label='电脑品牌',
        options=('苹果', '华为', '小米')
    )
    st.write(f'你选择的品牌是: {chosen}')

# 右边列设置
with right_column:
    # 返回值为选中的选项值
    chosen = st.radio(
        label='手机品牌',
        options=('苹果', '华为', '小米')
    )
    st.write(f'你选择的品牌是: {chosen}')

8.进度条progress

import streamlit as st
import time
st.write("模拟长时间的计算...")

# 创建一个动态显示数据的容器,用于动态显示进度条的进度数值
value = st.empty()
#创建进度条,进度条初始值为0
bar = st.progress(0)
for i in range(100):
    #这是动态显示的数值
    value.text(f'Iteration {i+1}')
    # 更新进度条
    bar.progress(i+1)
    time.sleep(0.1)
st.write('运行结束!')

9.文件上传下载

(1)文件上传:

st.file_uploader()

看下参数

参数介绍

上传penguins.csv文件,然后选择不同的两个企鹅特征,用散点图观察其分布形式。

看下源文件

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
st.write('上传penguins.csv文件,然后选择不同的两个企鹅特征,用散点图观察其分布形式。')

#创建文件上传组件,如果上传失败则返回None,上传下载都可以搞
upload_file = st.file_uploader(
    label = "上传数据集CSV文件" #自定义文件上传提示信息
)

#判断上传文件是否成功
if upload_file:
    df = pd.read_csv(upload_file)
    st.write('显示前5行数据:',df.head(5))
    st.success("上传文件成功!")
else:
    st.stop() # 退出

#制作下拉框,用于选择企鹅的不同特征
x_var = st.selectbox(
    label = "请选择:",
    options = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
)
#制作下拉框,用于选择企鹅的不同特征
y_var = st.selectbox(
    label = "请选择",
    options = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
)


fig, ax = plt.subplots() #返回值:画布、画布子图例
#绘制散点图

ax = sns.scatterplot(data=df,
                     x=x_var,
                     y=y_var,
                     hue='species'
                     )
plt.xlabel(x_var)
plt.ylabel(y_var)
plt.title('Penguins Scatter Plot')

#显示画布
st.pyplot(fig)

可以选择企鹅的不同特征,来绘制图

默认上传单个文件最大为200M,我们可以做修改

要在运行程序当前目录下,创建个.streamlit目录,里面创建个config.toml文件

内容如下,设置上传文件大小限制,单位是M

[server]
maxUploadSize = 4500

案例:保存上传的文件到本地

import streamlit as st


#创建文件上传组件,如果上传失败则返回None
upload_file = st.file_uploader(
    label = "上传图片" #自定义文件上传提示信息,

)


#判断上传文件是否成功
if upload_file:
    with open('上传图片.png','wb') as file:
        #注意,保存文件要保存上传对象.getvalue()
        file.write(upload_file.getvalue())

    st.success("上传文件成功!")
else:
    st.stop() # 退出

上传成功

(2)文件下载:

st.download_button()

看下参数

参数介绍

案例:

import streamlit as st

st.write('下载playwright.png文件')

with open('playwright.png','rb') as file:
    st.download_button(
        label='download_button',
        data=file,
        file_name="playwright.png",
        mime='image/png'
    )

运行程序,浏览器查看,点击下载按钮,下载完成


相关文章
|
21天前
|
缓存 自然语言处理 数据库
构建高效Python Web应用:异步编程与Tornado框架
【5月更文挑战第30天】在追求高性能Web应用开发的时代,异步编程已成为提升响应速度和处理并发请求的关键手段。本文将深入探讨Python世界中的异步编程技术,特别是Tornado框架如何利用非阻塞I/O和事件循环机制来优化Web服务的性能。我们将剖析Tornado的核心组件,并通过实例演示如何构建一个高效的Web服务。
|
2天前
|
关系型数据库 MySQL 数据库
如何使用Python的Flask框架来构建一个简单的Web应用
如何使用Python的Flask框架来构建一个简单的Web应用
9 0
|
3天前
|
开发框架 前端开发 JavaScript
【前端】前端的三大主流框架
【前端】前端的三大主流框架
12 3
|
8天前
|
前端开发 JavaScript 测试技术
web前端语言框架:探索现代前端开发的核心架构
web前端语言框架:探索现代前端开发的核心架构
18 4
|
10天前
|
运维 Serverless API
Serverless 应用引擎产品使用合集之如何实现一键迁移Web框架
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
|
18天前
|
前端开发 JavaScript API
Vue.js:渐进式JavaScript框架-前端开发
Vue.js:渐进式JavaScript框架-前端开发
21 3
|
17天前
|
前端开发 JavaScript 数据管理
前端框架的发展史&介绍框架特点
前端框架的发展史&介绍框架特点
15 0
前端框架的发展史&介绍框架特点
|
22天前
|
分布式计算 前端开发 Java
Java的web框架
Java的web框架
|
3天前
|
前端开发 JavaScript 安全
Web前端开发中的三大主流框架
Web前端开发中的三大主流框架
|
7天前
|
前端开发 JavaScript 编译器
Svelte框架:编译时优化的高性能前端框架
Svelte是一款由Rich Harris于2016年创建的高性能前端框架,以其编译时优化著称。它将复杂UI逻辑转化为高效的JavaScript,减少运行时开销。Svelte的核心理念是将编译时和运行时的复杂性分离,通过模板语法、组件系统、响应式系统和编译器实现高性能。关键优化策略包括声明式更新、模板内联、计算属性缓存、事件处理优化和代码分割。Svelte提供热模块替换、类型检查和丰富的生态系统,如SvelteKit。其响应式系统基于Reactive Statements,自动更新组件。
18 0

热门文章

最新文章