普通卷积、分组卷积和深度分离卷积概念以及参数量计算

简介: 普通卷积、分组卷积和深度分离卷积概念以及参数量计算

Google提出了移动端模型MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,适合应用在真实的移动端应用场景。这篇文章带你了解一下什么是普通卷积、分组卷积和深度分离卷积,以及如何计算参数量。

img

上面的图片展示了普通卷积和分组卷积的不同,下面我们通过具体的例子来看。

普通卷积

标准卷积运算量的计算公式:

$$ {FLOPs }=\left(2 \times C_{0} \times K^{2}-1\right) \times H \times W \times C_{1} $$

计算公式参考:深度学习之(经典)卷积层计算量以及参数量总结 (考虑有无bias,乘加情况) - 琴影 - 博客园 (cnblogs.com)

参数量计算公式:$K^{2} \times C_{0} \times C{1}$

$C_{0}$ :输入的通道。

K:卷积核大小。

H,W:输出 feature map的大小

$C_{1}$:输出通道的大小。

bias=False,即不考虑偏置的情况有-1,有True时没有-1。

举例:

输入的尺寸是227×227×3,卷积核大小是11×11,输出是6,输出维度是55×55,

我们带入公式可以计算出

参数量:

$11^2 \times 3 \times 6$=2178

运算量:

$2 \times 3 \times11^{2}\times 55\times 55 \times 6$=13176900

分组卷积

分组卷积则是对输入feature map进行分组,然后每组分别卷积。

假设输入feature map的尺寸仍为$C_{0}\times H \times W$,输出feature map的数量为$C_{1}$个,如果设定要分成G个groups,则每组的输入feature map数量为$\frac{C_{0}}{G}$,每组的输出feature map数量为$\frac{C{1}}{G}$,每个卷积核的尺寸为$\frac{C_{0}}{G}\times K \times K$,卷积核的总数仍为$C_{1}$个,每组的卷积核数量为$\frac{C{1}}{G}$,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为$N\times \frac{C_{0}}{G}\times K \times K$,总参数量减少为原来的 $\frac{1}{G}$。

计算量公式:

$$ \left[\left(2 \times K^{2} \times C_{0} / g +1\right) \times H \times W \times C_{o} / g\right] \times g $$

分组卷积的参数量为:

$$ K * K * \frac{C_{0}}{g} * \frac{C_{1}}{g} * g $$

举例:

输入的尺寸是227×227×3,卷积核大小是11×11,输出是6,输出维度是55×55,group为3

我们带入公式可以计算出

参数量:

$11^2 \times \frac{3}{3} \times \frac{6}{3} \times 3$=726

运算量:

$\left[\left(2 \times 11^{2} \times3 / 3 +1\right) \times 55 \times 55 \times 6 / 3\right] \times 3$=2205225

深度可分离卷积(Depthwise separable conv)

设输入特征维度为$D_{F}\times D_{F}\times M$,M为通道数,$D_{k}$为卷积核大小,M为输入的通道数, N为输出的通道数,G为分组数。

当分组数量等于输入map数量,输出map数量也等于输入map数量,即M=N=G,N个卷积核每个尺寸为$D_{k}\times D_{k}\times 1 $时,Group Convolution就成了Depthwise Convolution。

逐点卷积就是把G组卷积用conv1x1拼接起来。如下图:

查看源图像

深度可分离卷积有深度卷积+逐点卷积。计算如下:

  • 深度卷积:设输入特征维度为$D_{F}\times D_{F}\times M$,M为通道数。卷积核的参数为$D_{k}\times D_{k}\times 1 \times M$。输出深度卷积后的特征维度为:$D_{F}\times D_{F}\times M$。卷积时每个通道只对应一个卷积核(扫描深度为1),所以 FLOPs为:$M\times D_{F}\times D_{F}\times D_{K}\times D_{K}$
  • 逐点卷积:输入为深度卷积后的特征,维度为$D_{F}\times D_{F}\times M$。卷积核参数为$1\times1\times M\times N$。输出维度为$D_{F}\times D_{F}\times N$。卷积过程中对每个特征做$1 \times 1$的标准卷积, FLOPs为:$N \times D_{F} \times D_{F}\times M$

    将上面两个参数量相加就是 $D_{k} \times D_{k} \times M+M \times N$

所以深度可分离卷积参数量是标准卷积的$\frac{D_{K} \times D_{K} \times M+M \times N}{D_{K} \times D_{K} \times M \times N}=\frac{1}{N}+\frac{1}{D_{K}^{2}}$

目录
相关文章
|
19天前
|
机器学习/深度学习 计算机视觉
卷积神经网络中池化层的概念介绍
卷积神经网络中池化层的概念介绍
19 0
|
4月前
|
机器学习/深度学习 存储 TensorFlow
【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)
【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)
114 0
|
2月前
|
机器学习/深度学习 计算机视觉 Ruby
【池化层】基础回顾:带你认识神经网络中的池化层
【池化层】基础回顾:带你认识神经网络中的池化层
102 0
【池化层】基础回顾:带你认识神经网络中的池化层
|
8月前
|
机器学习/深度学习 算法
什么是卷积?(含如何实现卷积源码)
什么是卷积?(卷积简单实现源码)
84 0
什么是卷积?(含如何实现卷积源码)
|
10月前
|
机器学习/深度学习 计算机视觉
卷积层提取特征
卷积层提取特征
84 1
|
11月前
|
机器学习/深度学习 存储 编解码
深度学习基础入门篇[9.3]:卷积算子:空洞卷积、分组卷积、可分离卷积、可变性卷积等详细讲解以及应用场景和应用实例剖析
深度学习基础入门篇[9.3]:卷积算子:空洞卷积、分组卷积、可分离卷积、可变性卷积等详细讲解以及应用场景和应用实例剖析
133 0
|
11月前
|
机器学习/深度学习 计算机视觉 索引
全新卷积模块DRConv | 进一步提升卷积的表示能力
全新卷积模块DRConv | 进一步提升卷积的表示能力
274 0
|
11月前
|
机器学习/深度学习 编解码 数据可视化
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
|
11月前
|
机器学习/深度学习 编解码 算法
【Pytorch神经网络理论篇】 32 PNASNet模型:深层可分离卷积+组卷积+空洞卷积
PNASNet模型是Google公司的AutoML架构自动搜索所产生的模型,它使用渐进式网络架构搜索技术,并通过迭代自学习的方式,来寻找最优网络结构。即用机器来设计机器学习算法,使得它能够更好地服务于用户提供的数据。该模型在ImageNet数据集上Top-1准确率达到82.9%,Top-5准确率达到96。2%,是目前最好的图片分类模型之一。
147 0
|
机器学习/深度学习
【DL】神经网络中卷积层输出大小尺寸计算
神经网络中卷积层输出大小尺寸计算