原创 | 8 张彩图讲解 Spark 任务提交流程

简介: 原创 | 8 张彩图讲解 Spark 任务提交流程

看本文之前需要先了解 Spark 的基本角色,因为本篇重点是提交流程,所以不做展开,需要的同学可以参考官方文档:

https://spark.apache.org/docs/latest/cluster-overview.html


前面我们讲过 9张图详解Yarn的工作机制,惊艳阿里面试官,今天就来讲讲提交 Spark 作业的流程。


Spark 有多种部署模式,Standalone、Apache Mesos、Kubernetes、Yarn,但大多数生产环境下,Spark 是与 Yarn 一起使用的,所以今天就讲讲 yarn-cluster 模式。


当然我也见过不带 Hadoop 环境,使用 Standalone 模式的。比如在云上,Hadoop 一般会使用对应的服务,比如 AWS 的 EMR,一方面是费用较高,另一方面是较为笨重,没那么灵活。用 Standalone 模式只需要起几台机器,安装好 Spark 就可以了。


目前大多数还是本地环境,相信学会了 yarn-cluster 模式,其他的你也都会了。


这是以 yarn-cluster 模式提交一个 Spark 任务最简单的命令,计算 Pi(π) 的值。



image.png


通过 --master 参数以及 --deploy-mode 指定为 yarn-cluster 模式,Driver 将运行在 Yarn 中。


下面则是提交 Spark 作业的流程。


image.png


第 1 步:Client 提交 Application 到 ResourceManager。


image.png


第 2 步:ResourceManager 分配 container,在对应的 NodeManager 上启动 ApplicationMaster,ApplicationMaster 会再启动 Driver。



image.png


第 3 步:Driver 向 ResourceManager 申请 Executor。



image.png


第 4 步:ResourceManager 返回 Container 给 Driver。


image.png


第 5 步:Driver 在对应的 Container 上启动 Executor。



image.png


第 6 步:Executor 向 Driver 反向注册。



image.png


第 7 步:Executor 全部注册完,Driver 开始执行 main 函数。

第 8 步:Driver 执行函数时,遇到 action 算子就会触发一个 job,根据宽依赖划分 stage,每个 stage 生成 taskSet,将 task 分发到 Executor 上执行。

第 9 步:Executor 会不断与 Driver 通信,报告任务运行的情况。


看完这个也许你感觉自己学会了,但如果不去实践,过一段时间还是会忘记,所以赶快去面试吧。


·················END·················

相关文章
|
1月前
|
存储 缓存 分布式计算
Spark任务OOM问题如何解决?
大家好,我是V哥。在实际业务中,Spark任务常因数据量过大、资源分配不合理或代码瓶颈导致OOM(Out of Memory)。本文详细分析了各种业务场景下的OOM原因,并提供了优化方案,包括调整Executor内存和CPU资源、优化内存管理策略、数据切分及减少宽依赖等。通过综合运用这些方法,可有效解决Spark任务中的OOM问题。关注威哥爱编程,让编码更顺畅!
189 3
|
3月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何开发ODPS Spark任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
2月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
45 5
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
40 0
|
5月前
|
分布式计算 运维 Serverless
EMR Serverless Spark PySpark流任务体验报告
阿里云EMR Serverless Spark是一款全托管的云原生大数据计算服务,旨在简化数据处理流程,降低运维成本。测评者通过EMR Serverless Spark提交PySpark流任务,体验了从环境准备、集群创建、网络连接到任务管理的全过程。通过这次测评,可以看出阿里云EMR Serverless Spark适合有一定技术基础的企业,尤其是需要高效处理大规模数据的场景,但新用户需要投入时间和精力学习和适应。
7186 43
EMR Serverless Spark PySpark流任务体验报告
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark适合处理哪些任务?
【9月更文挑战第1天】Spark适合处理哪些任务?
168 3
|
3月前
|
存储 分布式计算 供应链
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
|
4月前
|
分布式计算 Java Serverless
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
本文以 ECS 连接 EMR Serverless Spark 为例,介绍如何通过 EMR Serverless spark-submit 命令行工具进行 Spark 任务开发。
415 7
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
|
4月前
|
分布式计算 运维 Serverless
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
在大数据快速发展的时代,流式处理技术对于实时数据分析至关重要。EMR Serverless Spark提供了一个强大而可扩展的平台,它不仅简化了实时数据处理流程,还免去了服务器管理的烦恼,提升了效率。本文将指导您使用EMR Serverless Spark提交PySpark流式任务,展示其在流处理方面的易用性和可运维性。
277 7
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
210 0

热门文章

最新文章

下一篇
无影云桌面