Spark读写Hbase中的数据

简介: def main(args: Array[String]) { val sparkConf = new SparkConf().setMaster("local").setAppName("cocapp").
def main(args: Array[String])  {
    val sparkConf = new SparkConf().setMaster("local").setAppName("cocapp").set("spark.kryo.registrator", classOf[HBaseConfiguration].getName)
      .set("spark.executor.memory", "4g")
    val sc: SparkContext = new SparkContext(sparkConf)
    val sqlContext = new HiveContext(sc)
    val mySQLUrl = "jdbc:mysql://localhost:3306/yangsy?user=root&password=yangsiyi"
    val rows = sqlContext.jdbc(mySQLUrl, "person")
    val tableName = "spark"
    val columnFamily = "cf" //rows.first().getString(1)
    val configuration = HBaseConfiguration.create();
    configuration.set(TableInputFormat.INPUT_TABLE, "test");
    val admin = new HBaseAdmin(configuration)
    val hBaseRDD = sc.newAPIHadoopRDD(configuration, classOf[TableInputFormat],
        classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
    classOf[org.apache.hadoop.hbase.client.Result])
      hBaseRDD.count()

def toHbase(rows: DataFrame,tableName : String,columnFamily: String)   {
    val configuration = HBaseConfiguration.create();
    val admin = new HBaseAdmin(configuration)
    if (admin.tableExists(tableName)) {
      print("table Exists")
      admin.disableTable(tableName);
      admin.deleteTable(tableName);
    }
    configuration.addResource("hbase-site.xml")
    val tableDesc = new HTableDescriptor(tableName)
    tableDesc.addFamily(new HColumnDescriptor(columnFamily))
    admin.createTable(tableDesc)
    rows.foreachPartition { row =>
      val table = new HTable(configuration, tableName)

      row.foreach { a =>
        val put = new Put(Bytes.toBytes("row1"))
        put.add(Bytes.toBytes(columnFamily), Bytes.toBytes("coulumn1"), Bytes.toBytes(a.getString(0)))
        table.put(put)
        println("insert into success")
      }
    }

然而并没有什么乱用,发现一个问题,就是说,在RDD取值与写入HBASE的时候,引入外部变量无法序列化。。。。。。网上很多说法是说extends Serializable ,可是尝试无效。Count()是可以获取到,但是如果我要在configuration中set列,然后进行查询就会报错了。暂时各种办法尝试无果,还在想办法,也不明原因。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
29天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
46 3
|
3月前
|
存储 分布式计算 Java
|
3月前
|
分布式计算 监控 大数据
如何处理 Spark 中的倾斜数据?
【8月更文挑战第13天】
240 4
|
3月前
|
存储 缓存 分布式计算
|
3月前
|
SQL 存储 分布式计算
|
3月前
|
分布式计算 Apache 数据安全/隐私保护
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
48 1
|
3月前
|
存储 分布式计算 分布式数据库
《HBase MapReduce之旅:我的学习笔记与心得》——跟随我的步伐,一同探索HBase世界,揭开MapReduce的神秘面纱,分享那些挑战与收获,让你在数据的海洋里畅游无阻!
【8月更文挑战第17天】HBase是Apache顶级项目,作为Bigtable的开源版,它是一个非关系型、分布式数据库,具备高可扩展性和性能。结合HDFS存储和MapReduce计算框架,以及Zookeeper协同服务,HBase支持海量数据高效管理。MapReduce通过将任务拆解并在集群上并行执行,极大提升处理速度。学习HBase MapReduce涉及理解其数据模型、编程模型及应用实践,虽然充满挑战,但收获颇丰,对职业发展大有裨益。
43 0
|
分布式计算 安全 Shell
Maxcompute Spark 访问 阿里云 Hbase
引子 本来这个东西是没啥好写的,但是在帮客户解决问题的时候,发现链路太长,不能怪客户弄不出来,记录一下 需求列表 MaxCompute Spark包 (写文章时刻为版本 0.32.1, 请自行更新,本文不是文档) Spark 配置 spark.
Maxcompute Spark 访问 阿里云 Hbase
|
分布式计算 Spark
spark访问hbase
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.spark.rdd.NewHadoopRDD val conf = HBaseConfigurat
1681 0
|
7天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
31 2
ClickHouse与大数据生态集成:Spark & Flink 实战