Spark SQL性能优化

简介:

性能优化参数

针对Spark SQL 性能调优参数如下:

代码示例

import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.api.java.JavaSQLContext;
import org.apache.spark.sql.api.java.Row;
import org.apache.spark.sql.hive.api.java.JavaHiveContext;


public class PerformanceTuneDemo {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("simpledemo").setMaster("local");
        conf.set("spark.sql.codegen""false");
        conf.set("spark.sql.inMemoryColumnarStorage.compressed""false");
        conf.set("spark.sql.inMemoryColumnarStorage.batchSize""1000");
        conf.set("spark.sql.parquet.compression.codec""snappy");
        JavaSparkContext sc = new JavaSparkContext(conf);

        JavaSQLContext sqlCtx = new JavaSQLContext(sc);
        JavaHiveContext hiveCtx = new JavaHiveContext(sc);

        List<Rowresult = hiveCtx.sql("SELECT foo,bar,name from pokes2 limit 10").collect();
        for (Row row : result) {
            System.out.println(row.getString(0) + "," + row.getString(1) + "," + row.getString(2));
        }
    }

}

Beeline 命令行设置优化参数

beeline> set spark.sql.codegen=true;
SET spark.sql.codegen=true
spark.sql.codegen=true
Time taken: 1.196 seconds

重要参数说明

spark.sql.codegen Spark SQL在每次执行次,先把SQL查询编译JAVA字节码。针对执行时间长的SQL查询或频繁执行的SQL查询,此配置能加快查询速度,因为它产生特殊的字节码去执行。但是针对很短(1 - 2秒)的临时查询,这可能增加开销,因为它必须先编译每一个查询。

spark.sql.inMemoryColumnarStorage.batchSize

When caching SchemaRDDs, Spark SQL groups together the records in the RDD in batches of the size given by this option (default: 1000), and compresses each batch. Very small batch sizes lead to low compression, but on the other hand very large sizes can also be problematic, as each batch might be too large to build up in memory.

目录
相关文章
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
61 0
|
2月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
3月前
|
SQL 监控 Oracle
Oracle SQL性能优化全面指南
在数据库管理领域,Oracle SQL性能优化是确保数据库高效运行和数据查询速度的关键
|
3月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
3月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
85 0
|
3月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
107 0
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
76 0
|
3月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
93 0
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
165 2
ClickHouse与大数据生态集成:Spark & Flink 实战