应用实战精解系列(七):RVB2601以太网通讯测试

简介: 芯片开放社区(OCC)面向广大开发者推出应用实战系列内容,通过分享开发者实战开发案例,总结应用开发经验,梳理开发中的常见问题及解决方案,为后续参与的开发者提供更多参考与借鉴。

在介绍Web播放器开发时,我们简单讲解了RVB2601开发板的Wi-Fi联网操作。为了给予大家更详细的操作指导,本期内容将讲解RVB2601开发板的软硬件接口原理和以太网通讯测试的步骤,并在最后为大家总结测试过程中遇到的问题及解决办法。


01 概述

RVB2601中集成的CH2601通过W800提供了AT透传的wifi 功能,可以完成和外界进行数据交换的需要。


02 驱动描述

2.1 硬件接口原理

image.png


CH2601采用SPI接口和W800进行数据交换,如图所示。

序号

W800

GPIO

1

SPI CS

PA15(SPI0_CS)

2

SPI MOSI

PA17(SPI0_MOSI)

3

SPI MISO

PA18(SPI0_MISO)

4

SPI  CLK

PA16(SPI0_CLK)

5

RST_N

PA21

6

WAKEUP

PA25


2.2 软件驱动设计

2.2.1 网络管理

网络管理支持有线网络、无线网络、GPRS网络、NB-IOT网络。我们只涉及到无线网络,所以这里就研究和网线网络相关的接口。网络管理接口如下所示:


函数

说明

netmgr_dev_wifi_init

无线设备初始化

netmgr_service_init

服务初始化

netmgr_config_wifi

无线配置

netmgr_start

使能网络设备

netmgr_reset

重置网络设备

netmgr_stop

停止网络链接

netmgr_is_gotip

网络设备是否获取到ip


1)网络管理接口详细说明

网络设备初始化


netmgr_hdl_t netmgr_dev_wifi_init()


函数说明:

该函数会注册netmgr_dev_t结构中的provision配网等回调函数。同时打开已注册的wifi设备节点,调用该设备实现的hal层初始化接口。同时将该设备加入到网络设备列表中统一管理。


返回值:

调用失败时返回NULL


服务初始化


void netmgr_service_init(utask_t *task)


初始化网络管理微服务。若外部微任务task为空,则内部创建微任务。同时将微服务加入到微任务中。


无线网络设备配置


int netmgr_config_wifi(netmgr_hdl_t hdl, char *ssid, uint8_t ssid_length, char *psk, uint8_t psk_length)


配置无线设备的ssid名称和对应的秘钥psk。


若定义了CONFIG_KV_SMART配置,如在某solution下的package.yaml中配置了CONFIG_KV_SMART: 1,则ssid和psk同时会被存储到kv文件系统中。对应的key定义如下:


#define KV_WIFI_SSID        "wifi_ssid"
#define KV_WIFI_PSK         "wifi_psk"


返回值:

调用成功时返回0,否则返回-1。


使能网络设备


int netmgr_start(netmgr_hdl_t hdl)


当网络参数配置后,就可以调用该接口使能指定网络设备开始正常工作。该函数最终会调用到对应网络设备初始化配置的provision配网回调。


该接口是非阻塞的,网络连接成功后,网络管理器会上报EVENT_NETMGR_GOT_IP事件,否则上报EVENT_NETMGR_NET_DISCON事件。应用开发者可通过event_subscribe接口订阅这两个消息来判断网络是否连接成功。用户也可通过调用netmgr_is_gotip判断是否正常获取到ip。


返回值:

调用成功时返回0,否则返回-1。


重置网络设备


int netmgr_reset(netmgr_hdl_t hdl, uint32_t sec)


复位网络设备连接,并在指定sec秒后自动重连。当sec为0时,复位后立即重连。该函数最终会调用到对应网络设备初始化配置的reset配网回调。该接口是非阻塞的。


返回值:

调用成功时返回0,否则返回-1。


停止网络设备


int netmgr_stop(netmgr_hdl_t hdl)


停止指定网络设备运行。该函数最终会调用到对应网络设备初始化配置的unprovision配网回调。该接口是阻塞的。


返回值:

调用成功时返回0,否则返回-1。

网络设备是否获取到ip


int netmgr_is_gotip(netmgr_hdl_t hdl)


指定hdl的网络设备是否获取到ip。


返回值:

当前网络设备已经成功获取到ip时返回1,否则返回0


2) SAL套接字适配层

SAL组件完成对不同网络实现接口的抽象并对上层提供一组标准的 BSD Socket API,开发者只需关心和使用标准网络接口,而无需关心底层具体实现,极大的提高了系统的兼容性,方便开发者完成协议栈的适配和网络通信相关的开发。


如下图所示,本次试用的RVB2601评估板采用的AT通道透传与W800芯片通讯完成以太网通讯功能。

image.gifimage.png


系统中提供了W800模块驱动中已经完成了SAL层接口的移植工作,因此在完成W800设备注册后,软件打开该设备的时候,驱动自动注册进SAL接口。后续的使用过程中,上层软件就感受不到ATPaser的存在了。


如下代码:


static int w800_dev_open(aos_dev_t *dev)
{
    // power on device
    sal_module_register(&w800_sal_driver);
    sal_init();
    return 0;
}


03 程序测试

本测试程序通过RVB2601建立一个TCPclient测试程序,与TCPServer通讯,完成TCPClient向TCPServer定时数据传递的功能。


3.1 初始化

注册的以太网事件回调接口函数


static void network_event(uint32_t event_id, const void *param, void *context)
{
    switch(event_id) {
    case EVENT_NETMGR_GOT_IP: {
        LOGD(TAG, "EVENT_NETMGR_GOT_IP");
    }
        break;
    case EVENT_NETMGR_NET_DISCON:
        LOGD(TAG, "EVENT_NETMGR_NET_DISCON");
        break;
    }
    /*do exception process */
    // app_exception_event(event_id);
}


以太网设备初始化函数


static void network_init()
{
    w800_wifi_param_t w800_param;
    /* init wifi driver and network */
    w800_param.reset_pin      = PA21;
    w800_param.baud           = 1*1000000;
    w800_param.cs_pin         = PA15;
    w800_param.wakeup_pin     = PA25;
    w800_param.int_pin        = PA22;
    w800_param.channel_id     = 0;
    w800_param.buffer_size    = 4*1024;
    wifi_w800_register(NULL, &w800_param);
    app_netmgr_hdl = netmgr_dev_wifi_init();
    if (app_netmgr_hdl) {
        utask_t *task = utask_new("netmgr", 2 * 1024, QUEUE_MSG_COUNT, AOS_DEFAULT_APP_PRI);
        netmgr_service_init(task);
        netmgr_config_wifi(app_netmgr_hdl, "Baidu-jy", 10, "12345678", 10);
        netmgr_start(app_netmgr_hdl);
        event_subscribe(EVENT_NETMGR_GOT_IP, network_event, NULL);
        event_subscribe(EVENT_NETMGR_NET_DISCON, network_event, NULL);
    }
}


3.2 TCPClient程序


static char lan_buf[1600];
int tcpclient(void)
{
    int                 iCounter;
    struct sockaddr_in  sAddr;
    int                 iAddrSize;
    int                 iSockFD;
    int                 iStatus;
    long                lLoopCount = 0;
    char            *cBsdBuf = NULL;
    int time_ms = aos_now_ms();
    int time_ms_step = aos_now_ms();
    int send_bytes = 0;
     running = 1;
    cBsdBuf = lan_buf;
    //filling the TCP server socket address
    FD_ZERO(&sAddr);
    sAddr.sin_family = AF_INET;
    sAddr.sin_port = htons(26666);
    sAddr.sin_addr.s_addr = inet_addr("192.168.95.5");
    iAddrSize = sizeof(struct sockaddr_in);
    // creating a TCP socket
    iSockFD = socket(AF_INET, SOCK_STREAM, 0);
    if (iSockFD < 0) {
        LOGE(TAG, "TCP ERROR: create tcp client socket fd error!");
        goto Exit1;
    }
    LOGD(TAG, "ServerIP=%s port=%d.", "192.168.95.5", 26666);
    LOGD(TAG, "Create socket %d.", iSockFD);
    // connecting to TCP server
   iStatus = connect(iSockFD, (struct sockaddr *)&sAddr, iAddrSize);
    if (iStatus < 0) {
        LOGE(TAG, "TCP ERROR: tcp client connect server error! ");
        goto Exit;
    }
    LOGD(TAG, "TCP: Connect server successfully.");
    // sending multiple packets to the TCP server
    printf("[  ID] Interval       Transfer     Bandwidth\n");
    while (running) {
         sprintf(cBsdBuf,"%02d",lLoopCount);
        // sending packet
        iStatus = send(iSockFD, cBsdBuf, strlen(cBsdBuf)+1, 0);
        if (iStatus <= 0) {
            printf("TCP ERROR: tcp client send data error!  iStatus:%d", iStatus);
            goto Exit;
        }
        lLoopCount++;
        aos_msleep(100);
        if ((aos_now_ms() - time_ms) / 1000 >  2) {
            break;
        }
    }
    LOGD(TAG, "TCP: Sent packets successfully.");
Exit:
    //closing the socket after sending 1000 packets
    close(iSockFD);
return 0;
}


3.3 通过console中断调用


int tcpclient(void);
static void cmd_tcp_client_handler(char *wbuf, int wbuf_len, int argc, char **argv)
{
    tcpclient();
}
int cli_reg_cmd_ft(void)
{
    static const struct cli_command tcp_cmd_info = {
        "tcptest",
        "tcp client test",
        cmd_tcp_client_handler,
    };
    aos_cli_register_command(&tcp_cmd_info);
    return 0;
}


3.4 Linux系统端的TCPServer测试程序


#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <netinet/in.h>
#define SERVPORT 26666
#define BACKLOG 10
#define MAXDATASIZE 1024
int main() {
    struct sockaddr_in server_sockaddr;//声明服务器socket存储结构
    int sin_size,recvbytes;
    int sockfd,client_fd;//socket描述符
    char buf[MAXDATASIZE];//传输的数据
    //1.建立socket
    //AF_INET 表示IPV4
    //SOCK_STREAM 表示TCP
    if((sockfd = socket(AF_INET,SOCK_STREAM,0)) < 0) {
        perror("Socket");
        exit(1);
    }
    printf("Socket successful!,sockfd=%d\n",sockfd);
    //以sockaddt_in结构体填充socket信息
    server_sockaddr.sin_family       = AF_INET;//IPv4
    server_sockaddr.sin_port         = htons(SERVPORT);//端口
    server_sockaddr.sin_addr.s_addr = INADDR_ANY;//本主机的任意IP都可以使用
    bzero(&(server_sockaddr.sin_zero),8);//保留的8字节置零
    //2.绑定 fd与 端口和地址
    if((bind(sockfd,(struct sockaddr *)&server_sockaddr,sizeof(struct sockaddr))) < 0) {
        perror("bind");
        exit(-1);
    }
    printf("bind successful !\n");
    //3.监听
    if(listen(sockfd,BACKLOG) < 0) {
        perror("listen");
       exit(1);
    }
    printf("listening ... \n");
     //4.接收请求,函数在有客户端连接时返回一个客户端socket fd,否则则阻塞
     //优化:这里同样可以使用select,以及poll来实现异步通信
     if((client_fd = accept(sockfd,NULL,&sin_size)) == -1) {
         perror("accept");
         exit(1);
     }
     printf("accept success! client_fd:%d\n",client_fd);
    while(1){
     //5.接收数据
     //注意:这里传入的fd,不是建立的socket fd,而是accept返回的连接客户端 socket fd
     if((recvbytes = read(client_fd,buf,MAXDATASIZE)) == -1) {
         perror("recv");
         exit(1);
     }
    if(recvbytes == 0)
    {
     printf("client quit\n");
    break;
    }
    printf("received data %d: %s\n",recvbytes,buf);
   }
    //6.关闭
    close(sockfd);
}


04 实测效果演示

RVB2601链接wifi并获取IP地址,IP地址为192.168.95.2

image.gif

image.png

服务器的IP地址为:192.168.95.5

image.gifimage.png


为了更好的展示通讯过程,在linux机器上运行tcpdump工具来抓取对应端口的网络数据包,通过wireshark分析这些数据包。


我们在linux系统上打开两个终端。


一个终端运行tcpdump:


sudo tcpdump tcp port 26666 and host 192.168.95.5 -i wlan0 -w ./1.cap


另一个终端运行tcpserver软件。

image.png


在RVB2601评估板的console中执行tcptest命令

image.png


通过wireshark分析tcpdump抓取的以太网TCP数据帧分析

image.png


05 特殊情况总结

RVB2061这种协议栈运行在W800的情况,无法实现TCPServer中accept和listen这些函数,因此,也就无法实现TCPServer这种功能了,只能采用TCPClient方式通讯。

image.png

06 下期预告

有关RVB2601开发板的以太网测试就先讲到这里,下期内容将为大家推荐RVB2601的麦克风录音测试。欢迎大家持续关注应用实战精解系列内容。



相关文章
|
24天前
|
SQL 安全 测试技术
【软件设计师备考 专题 】测试要求说明书的编写和应用
【软件设计师备考 专题 】测试要求说明书的编写和应用
54 0
|
1月前
|
Web App开发 前端开发 测试技术
探索自动化测试工具:Selenium的威力与应用
探索自动化测试工具:Selenium的威力与应用
探索自动化测试工具:Selenium的威力与应用
|
2月前
|
Java 测试技术 Maven
JAVA单元测试概念与实战
单元测试是软件开发中的一个测试方法,用于验证软件代码中最小的、独立的单元是否按照预期工作。在Java中,这通常指的是单个的方法或者一个类的个别功能。单元测试的目的是隔离代码的每个部分,并确保各个部分是正确的。
51 4
|
28天前
|
安全 测试技术
现代软件测试中的自动化技术应用及挑战
在当今数字化时代,软件测试的重要性日益凸显。本文探讨了现代软件测试中自动化技术的应用现状和挑战,分析了自动化测试在提高效率、降低成本、增强可靠性等方面的优势,同时也提出了自动化测试所面临的挑战和解决方案。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索AI在软件测试中的应用与挑战
【2月更文挑战第25天】 随着人工智能(AI)技术的迅猛发展,其在软件测试领域的应用逐渐深入。AI不仅改变了传统测试流程,提高了测试效率和质量,也引入了新的挑战。本文将详细探讨AI在软件测试中的具体应用,包括智能化测试用例生成、缺陷预测、自动化测试执行等,并分析当前面临的主要挑战,如数据质量、模型泛化能力和工具集成等问题。通过实例分析和研究展望,本文旨在为软件测试专业人士提供一个关于AI技术融合的全面视角。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索AI在软件测试中的应用和优势
【2月更文挑战第22天】 随着科技的不断发展,人工智能(AI)在各个领域的应用越来越广泛。本文主要探讨了AI在软件测试领域的应用及其带来的优势。文章首先介绍了AI技术的基本概念,然后详细分析了AI在软件测试中的具体应用,包括自动化测试、智能缺陷检测和预测等方面。最后,文章总结了AI在软件测试领域的优势,如提高测试效率、降低人力成本、提高测试质量等,并展望了AI在软件测试领域的未来发展趋势。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索AI在软件测试中的应用与挑战
【2月更文挑战第15天】 随着人工智能技术的飞速发展,其在软件测试领域的应用日益广泛。本文将深入探讨AI技术如何革新传统软件测试流程,以及在实施过程中可能遇到的挑战。我们将从自动化测试用例生成、智能化缺陷识别、测试数据优化等方面入手,分析AI如何提升测试效率和质量。同时,也将讨论集成AI所面临的问题,如数据隐私保护、算法透明度、以及对测试人员技能的新要求。
|
19天前
|
Web App开发 Java 测试技术
深入理解与应用软件自动化测试工具Selenium
随着软件开发的快速发展,软件测试在保证产品质量方面发挥着越来越重要的作用。其中,自动化测试以其效率高、成本低的特点受到了广大开发者的欢迎。本文主要介绍了自动化测试工具Selenium的基本概念、原理以及在实际开发中的应用,旨在帮助读者更好地理解和使用Selenium进行高效的自动化测试。
22 4
|
25天前
|
设计模式 敏捷开发 监控
深入理解与应用软件自动化测试框架
在快速迭代的软件开发过程中,自动化测试已成为确保产品质量和加快交付速度的关键因素。本文将详细探讨自动化测试框架的核心原理、设计模式及其在实际项目中的应用。我们将分析几种流行的自动化测试工具,如Selenium、Appium和JUnit,并讨论它们如何集成以形成强大的测试解决方案。文章还将展示通过自定义框架来满足特定测试需求的实例,以及如何通过持续集成和持续部署(CI/CD)流程优化测试实践。
|
28天前
|
缓存 运维 Serverless
应用研发平台EMAS产品常见问题之测试检查更新没有反应如何解决
应用研发平台EMAS(Enterprise Mobile Application Service)是阿里云提供的一个全栈移动应用开发平台,集成了应用开发、测试、部署、监控和运营服务;本合集旨在总结EMAS产品在应用开发和运维过程中的常见问题及解决方案,助力开发者和企业高效解决技术难题,加速移动应用的上线和稳定运行。