超分重建 psnr 和 SSIM计算(pytorch实现)

简介: 图像处理中,有哪些算法可以用来比较两张图片的相似度?
🥇 版权: 本文由【墨理学AI】原创、首发、各位大佬、敬请查阅、感谢三连
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️

top.png

🎉 图像处理中,有哪些算法可以用来比较两张图片的相似度?

  • 就计算机视觉领域而言,图像相似度对比传统学习和研究中,最为常见的就是 PSNR、SSIM 这俩指标了
  • 常见于、超分重建、图像修复领域
  • 近两年一些新的顶会论文也会涌现出新的一些图像质量评价指标、不过 PSNR、SSIM 依旧是几乎每篇图像质量相关论文中都会沿袭下来进行对比、凸显自己做出的创新取得了如果厉害的定量指标提升、往往更为直观、和让砖家评委信服

🎉 此次博文的正文内容如下

声明:

把整理的超分重建 SR 和 HR 图片 psnr 和 SSIM计算(pytorch实现)代码粘贴在这里;

utils_image.py 引用来源如下:
'''
modified by Kai Zhang (github: https://github.com/cszn)
03/03/2019
https://github.com/twhui/SRGAN-pyTorch
https://github.com/xinntao/BasicSR
'''
项目结构如下,小伙伴复制了代码,自己按路径整理下即可使用:

1

sr_evaluate.py
from utils import utils_image as util
import os
import cv2

# HR_path = 'dataset/benchmark/Set5/HR'
# SR_path = 'experiments/results/Set5/x4'
HR_path = 'dataset/benchmark/Urban100/HR'
# SR_path = 'experiments/results/Urban100/x4'
SR_path = 'experiments/results/csnla_Urban100'


n_channels = 3

def evulate():
    hr_paths = util.get_image_paths(HR_path)
    numbers = len(hr_paths)
    sum_psnr = 0
    max_psnr = 0
    min_psnr = 100
    sum_ssim = 0
    max_ssim = 0
    min_ssim = 1
    for hr_path in hr_paths:
        # img_name, ext = os.path.splitext(os.path.basename(img_path))
        img_name = os.path.basename(hr_path)
        sr_path = os.path.join(SR_path,img_name)
        print(img_name)
        # print(hr_path)
        # print(sr_path)
        img_Hr = util.imread_uint(hr_path, n_channels=n_channels)  # HR image, int8
        img_Sr = util.imread_uint(sr_path, n_channels=n_channels)  # HR image, int8
        psnr = util.calculate_psnr(img_Sr, img_Hr,)
        print(psnr)
        sum_psnr += psnr
        max_psnr = max(max_psnr,psnr)
        min_psnr = min(min_psnr, psnr)
        ssim = util.calculate_ssim(img_Sr, img_Hr,)
        # print(ssim)
        sum_ssim += ssim
        max_ssim = max(max_ssim,ssim)
        min_ssim = min(min_ssim, ssim)
    print('Average psnr = ', sum_psnr / numbers)
    print('min_psnr = ', min_psnr)
    print('Max_psnr = ', max_psnr)
    print('Average ssim = ', sum_ssim / numbers)
    print('min_ssim = ', min_ssim)
    print('Max_ssim = ', max_ssim)


def evulate_diff_name():
    hr_paths = util.get_image_paths(HR_path)
    numbers = len(hr_paths)
    sum_psnr = 0
    max_psnr = 0
    min_psnr = 100
    sum_ssim = 0
    max_ssim = 0
    min_ssim = 1
    for hr_path in hr_paths:
        name, ext = os.path.splitext(os.path.basename(hr_path))
        img_name = os.path.basename(hr_path)
        print(img_name)
        temp = str(name) + '_x4_SR.png'
        # print(temp)
        sr_path = os.path.join(SR_path, temp)
        print(sr_path)
        # print(hr_path)
        # print(sr_path)
        img_Hr = util.imread_uint(hr_path, n_channels=n_channels)  # HR image, int8
        img_Sr = util.imread_uint(sr_path, n_channels=n_channels)  # HR image, int8
        # img_Hr = cv2.imread(hr_path)
        # img_Sr = cv2.imread(sr_path)
        psnr = util.calculate_psnr(img_Sr, img_Hr,)
        print(psnr)
        sum_psnr += psnr
        max_psnr = max(max_psnr,psnr)
        min_psnr = min(min_psnr, psnr)
        ssim = util.calculate_ssim(img_Sr, img_Hr,)
        # print(ssim)
        sum_ssim += ssim
        max_ssim = max(max_ssim,ssim)
        min_ssim = min(min_ssim, ssim)
    print('Average psnr = ', sum_psnr / numbers)
    print('min_psnr = ', min_psnr)
    print('Max_psnr = ', max_psnr)
    print('Average ssim = ', sum_ssim / numbers)
    print('min_ssim = ', min_ssim)
    print('Max_ssim = ', max_ssim)


if __name__ == '__main__':
    print('-------------------------compute psnr and ssim for evulate sr model---------------------------------')
    # evulate()
    evulate_diff_name()

_

utils 目录下的 utils_image.py
import os
import math
import random
import numpy as np
import torch
import cv2
from torchvision.utils import make_grid
from datetime import datetime
# import torchvision.transforms as transforms
import matplotlib.pyplot as plt

'''
modified by Kai Zhang (github: https://github.com/cszn)
03/03/2019
https://github.com/twhui/SRGAN-pyTorch
https://github.com/xinntao/BasicSR
'''

IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP']


def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)


def get_timestamp():
    return datetime.now().strftime('%y%m%d-%H%M%S')


def imshow(x, title=None, cbar=False, figsize=None):
    plt.figure(figsize=figsize)
    plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
    if title:
        plt.title(title)
    if cbar:
        plt.colorbar()
    plt.show()


def surf(Z):
    from mpl_toolkits.mplot3d import Axes3D
    fig = plt.figure()
    ax = Axes3D(fig)
    X = np.arange(0, 25, 1)
    Y = np.arange(0, 25, 1)
    
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    # ax3.contour(X, Y, Z, zdim='z', offset=-2, cmap='rainbow)
#    ax.view_init(elev=45, azim=45)
#    ax.set_xlabel("x")
#    plt.title(" ")
    plt.tight_layout(0.9)
    plt.show()




'''
# =======================================
# get image pathes of files
# =======================================
'''


def get_image_paths(dataroot):
    paths = None  # return None if dataroot is None
    if dataroot is not None:
        paths = sorted(_get_paths_from_images(dataroot))
    return paths


def _get_paths_from_images(path):
    assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
    images = []
    for dirpath, _, fnames in sorted(os.walk(path)):
        for fname in sorted(fnames):
            if is_image_file(fname):
                img_path = os.path.join(dirpath, fname)
                images.append(img_path)
    assert images, '{:s} has no valid image file'.format(path)
    return images


'''
# =======================================
# makedir
# =======================================
'''


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def mkdirs(paths):
    if isinstance(paths, str):
        mkdir(paths)
    else:
        for path in paths:
            mkdir(path)


def mkdir_and_rename(path):
    if os.path.exists(path):
        new_name = path + '_archived_' + get_timestamp()
        print('Path already exists. Rename it to [{:s}]'.format(new_name))
        os.rename(path, new_name)
    os.makedirs(path)


'''
# =======================================
# read image from path
# Note: opencv is fast
# but read BGR numpy image
# =======================================
'''


# ----------------------------------------
# get single image of size HxWxn_channles (BGR)
# ----------------------------------------
def read_img(path):
    # read image by cv2
    # return: Numpy float32, HWC, BGR, [0,1]
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # cv2.IMREAD_GRAYSCALE
    img = img.astype(np.float32) / 255.
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    # some images have 4 channels
    if img.shape[2] > 3:
        img = img[:, :, :3]
    return img


# ----------------------------------------
# get uint8 image of size HxWxn_channles (RGB)
# ----------------------------------------
def imread_uint(path, n_channels=3):
    #  input: path
    # output: HxWx3(RGB or GGG), or HxWx1 (G)
    if n_channels == 1:
        img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
        img = np.expand_dims(img, axis=2)  # HxWx1
    elif n_channels == 3:
        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
        if img.ndim == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
        else:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
    return img


def imsave(img, img_path):
    if img.ndim == 3:
        img = img[:, :, [2, 1, 0]]
    cv2.imwrite(img_path, img)


'''
# =======================================
# numpy(single) <--->  numpy(unit)
# numpy(single) <--->  tensor
# numpy(unit)   <--->  tensor
# =======================================
'''


# --------------------------------
# numpy(single) <--->  numpy(unit)
# --------------------------------


def uint2single(img):

    return np.float32(img/255.)

def unit2single(img):

    return np.float32(img/255.)

def single2uint(img):

    return np.uint8((img.clip(0, 1)*255.).round())


def unit162single(img):

    return np.float32(img/65535.)


def single2uint16(img):

    return np.uint8((img.clip(0, 1)*65535.).round())


# --------------------------------
# numpy(unit) <--->  tensor
# uint (HxWxn_channels (RGB) or G)
# --------------------------------


# convert uint (HxWxn_channels) to 4-dimensional torch tensor
def uint2tensor4(img):
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)


# convert uint (HxWxn_channels) to 3-dimensional torch tensor
def uint2tensor3(img):
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)


# convert torch tensor to uint
def tensor2uint(img):
    img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
    if img.ndim == 3:
        img = np.transpose(img, (1, 2, 0))
    return np.uint8((img*255.0).round())


# --------------------------------
# numpy(single) <--->  tensor
# single (HxWxn_channels (RGB) or G)
# --------------------------------


# convert single (HxWxn_channels) to 4-dimensional torch tensor
def single2tensor4(img):
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)


def single2tensor5(img):
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)


def single42tensor4(img):
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()

# convert single (HxWxn_channels) to 3-dimensional torch tensor
def single2tensor3(img):
    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()


# convert torch tensor to single
def tensor2single(img):
    img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
    if img.ndim == 3:
        img = np.transpose(img, (1, 2, 0))

    return img

def tensor2single3(img):
    img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
    if img.ndim == 3:
        img = np.transpose(img, (1, 2, 0))
    elif img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    return img


# from skimage.io import imread, imsave
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
    '''
    Converts a torch Tensor into an image Numpy array of BGR channel order
    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
    '''
    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # squeeze first, then clamp
    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
    n_dim = tensor.dim()
    if n_dim == 4:
        n_img = len(tensor)
        img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 3:
        img_np = tensor.numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 2:
        img_np = tensor.numpy()
    else:
        raise TypeError(
            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
    if out_type == np.uint8:
        img_np = (img_np * 255.0).round()
        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
    return img_np.astype(out_type)


'''
# =======================================
# image processing process on numpy image
# augment(img_list, hflip=True, rot=True):
# =======================================
'''


def augment_img(img, mode=0):
    if mode == 0:
        return img
    elif mode == 1:
        return np.flipud(np.rot90(img))
    elif mode == 2:
        return np.flipud(img)
    elif mode == 3:
        return np.rot90(img, k=3)
    elif mode == 4:
        return np.flipud(np.rot90(img, k=2))
    elif mode == 5:
        return np.rot90(img)
    elif mode == 6:
        return np.rot90(img, k=2)
    elif mode == 7:
        return np.flipud(np.rot90(img, k=3))


def augment_img_np3(img, mode=0):
    if mode == 0:
        return img
    elif mode == 1:
        return img.transpose(1, 0, 2)
    elif mode == 2:
        return img[::-1, :, :]
    elif mode == 3:
        img = img[::-1, :, :]
        img = img.transpose(1, 0, 2)
        return img
    elif mode == 4:
        return img[:, ::-1, :]
    elif mode == 5:
        img = img[:, ::-1, :]
        img = img.transpose(1, 0, 2)
        return img
    elif mode == 6:
        img = img[:, ::-1, :]
        img = img[::-1, :, :]
        return img
    elif mode == 7:
        img = img[:, ::-1, :]
        img = img[::-1, :, :]
        img = img.transpose(1, 0, 2)
        return img


def augment_img_tensor(img, mode=0):
    img_size = img.size()
    img_np = img.data.cpu().numpy()
    if len(img_size) == 3:
        img_np = np.transpose(img_np, (1, 2, 0))
    elif len(img_size) == 4:
        img_np = np.transpose(img_np, (2, 3, 1, 0))
    img_np = augment_img(img_np, mode=mode)
    img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
    if len(img_size) == 3:
        img_tensor = img_tensor.permute(2, 0, 1)
    elif len(img_size) == 4:
        img_tensor = img_tensor.permute(3, 2, 0, 1)

    return img_tensor.type_as(img)


def augment_imgs(img_list, hflip=True, rot=True):
    # horizontal flip OR rotate
    hflip = hflip and random.random() < 0.5
    vflip = rot and random.random() < 0.5
    rot90 = rot and random.random() < 0.5

    def _augment(img):
        if hflip:
            img = img[:, ::-1, :]
        if vflip:
            img = img[::-1, :, :]
        if rot90:
            img = img.transpose(1, 0, 2)
        return img

    return [_augment(img) for img in img_list]


'''
# =======================================
# image processing process on numpy image
# channel_convert(in_c, tar_type, img_list):
# rgb2ycbcr(img, only_y=True):
# bgr2ycbcr(img, only_y=True):
# ycbcr2rgb(img):
# modcrop(img_in, scale):
# =======================================
'''


def rgb2ycbcr(img, only_y=True):
    '''same as matlab rgb2ycbcr
    only_y: only return Y channel
    Input:
        uint8, [0, 255]
        float, [0, 1]
    '''
    in_img_type = img.dtype
    img.astype(np.float32)
    if in_img_type != np.uint8:
        img *= 255.
    # convert
    if only_y:
        rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
    else:
        rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
                              [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
    if in_img_type == np.uint8:
        rlt = rlt.round()
    else:
        rlt /= 255.
    return rlt.astype(in_img_type)


def ycbcr2rgb(img):
    '''same as matlab ycbcr2rgb
    Input:
        uint8, [0, 255]
        float, [0, 1]
    '''
    in_img_type = img.dtype
    img.astype(np.float32)
    if in_img_type != np.uint8:
        img *= 255.
    # convert
    rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
                          [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
    if in_img_type == np.uint8:
        rlt = rlt.round()
    else:
        rlt /= 255.
    return rlt.astype(in_img_type)


def bgr2ycbcr(img, only_y=True):
    '''bgr version of rgb2ycbcr
    only_y: only return Y channel
    Input:
        uint8, [0, 255]
        float, [0, 1]
    '''
    in_img_type = img.dtype
    img.astype(np.float32)
    if in_img_type != np.uint8:
        img *= 255.
    # convert
    if only_y:
        rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
    else:
        rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
                              [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
    if in_img_type == np.uint8:
        rlt = rlt.round()
    else:
        rlt /= 255.
    return rlt.astype(in_img_type)


def modcrop(img_in, scale):
    # img_in: Numpy, HWC or HW
    img = np.copy(img_in)
    if img.ndim == 2:
        H, W = img.shape
        H_r, W_r = H % scale, W % scale
        img = img[:H - H_r, :W - W_r]
    elif img.ndim == 3:
        H, W, C = img.shape
        H_r, W_r = H % scale, W % scale
        img = img[:H - H_r, :W - W_r, :]
    else:
        raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
    return img


def shave(img_in, border=0):
    # img_in: Numpy, HWC or HW
    img = np.copy(img_in)
    h, w = img.shape[:2]
    img = img[border:h-border, border:w-border]
    return img


def channel_convert(in_c, tar_type, img_list):
    # conversion among BGR, gray and y
    if in_c == 3 and tar_type == 'gray':  # BGR to gray
        gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
        return [np.expand_dims(img, axis=2) for img in gray_list]
    elif in_c == 3 and tar_type == 'y':  # BGR to y
        y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
        return [np.expand_dims(img, axis=2) for img in y_list]
    elif in_c == 1 and tar_type == 'RGB':  # gray/y to BGR
        return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
    else:
        return img_list


'''
# =======================================
# metric, PSNR and SSIM
# =======================================
'''


# ----------
# PSNR
# ----------
def calculate_psnr(img1, img2, border=0):
    # img1 and img2 have range [0, 255]
    if not img1.shape == img2.shape:
        raise ValueError('Input images must have the same dimensions.')
    h, w = img1.shape[:2]
    img1 = img1[border:h-border, border:w-border]
    img2 = img2[border:h-border, border:w-border]

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    return 20 * math.log10(255.0 / math.sqrt(mse))


# ----------
# SSIM
# ----------
def calculate_ssim(img1, img2, border=0):
    '''calculate SSIM
    the same outputs as MATLAB's
    img1, img2: [0, 255]
    '''
    if not img1.shape == img2.shape:
        raise ValueError('Input images must have the same dimensions.')
    h, w = img1.shape[:2]
    img1 = img1[border:h-border, border:w-border]
    img2 = img2[border:h-border, border:w-border]

    if img1.ndim == 2:
        return ssim(img1, img2)
    elif img1.ndim == 3:
        if img1.shape[2] == 3:
            ssims = []
            for i in range(3):
                ssims.append(ssim(img1, img2))
            return np.array(ssims).mean()
        elif img1.shape[2] == 1:
            return ssim(np.squeeze(img1), np.squeeze(img2))
    else:
        raise ValueError('Wrong input image dimensions.')


def ssim(img1, img2):
    C1 = (0.01 * 255)**2
    C2 = (0.03 * 255)**2

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                            (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()


'''
# =======================================
# pytorch version of matlab imresize
# =======================================
'''


# matlab 'imresize' function, now only support 'bicubic'
def cubic(x):
    absx = torch.abs(x)
    absx2 = absx**2
    absx3 = absx**3
    return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
        (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))


def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
    if (scale < 1) and (antialiasing):
        # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = torch.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5+scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = torch.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    P = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
        1, P).expand(out_length, P)

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
    # apply cubic kernel
    if (scale < 1) and (antialiasing):
        weights = scale * cubic(distance_to_center * scale)
    else:
        weights = cubic(distance_to_center)
    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = torch.sum(weights, 1).view(out_length, 1)
    weights = weights / weights_sum.expand(out_length, P)

    # If a column in weights is all zero, get rid of it. only consider the first and last column.
    weights_zero_tmp = torch.sum((weights == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 1, P - 2)
        weights = weights.narrow(1, 1, P - 2)
    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 0, P - 2)
        weights = weights.narrow(1, 0, P - 2)
    weights = weights.contiguous()
    indices = indices.contiguous()
    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)


# --------------------------------
# imresize for tensor image
# --------------------------------
def imresize(img, scale, antialiasing=True):
    # Now the scale should be the same for H and W
    # input: img: pytorch tensor, CHW or HW [0,1]
    # output: CHW or HW [0,1] w/o round
    need_squeeze = True if img.dim() == 2 else False
    if need_squeeze:
        img.unsqueeze_(0)
    in_C, in_H, in_W = img.size()
    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
    kernel_width = 4
    kernel = 'cubic'

    # Return the desired dimension order for performing the resize.  The
    # strategy is to perform the resize first along the dimension with the
    # smallest scale factor.
    # Now we do not support this.

    # get weights and indices
    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
        in_H, out_H, scale, kernel, kernel_width, antialiasing)
    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
        in_W, out_W, scale, kernel, kernel_width, antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
    img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)

    sym_patch = img[:, :sym_len_Hs, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)

    sym_patch = img[:, -sym_len_He:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(in_C, out_H, in_W)
    kernel_width = weights_H.size(1)
    for i in range(out_H):
        idx = int(indices_H[i][0])
        for j in range(out_C):
            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
    out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)

    sym_patch = out_1[:, :, :sym_len_Ws]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, :, -sym_len_We:]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(in_C, out_H, out_W)
    kernel_width = weights_W.size(1)
    for i in range(out_W):
        idx = int(indices_W[i][0])
        for j in range(out_C):
            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
    if need_squeeze:
        out_2.squeeze_()
    return out_2


# --------------------------------
# imresize for numpy image
# --------------------------------
def imresize_np(img, scale, antialiasing=True):
    # Now the scale should be the same for H and W
    # input: img: Numpy, HWC or HW [0,1]
    # output: HWC or HW [0,1] w/o round
    img = torch.from_numpy(img)
    need_squeeze = True if img.dim() == 2 else False
    if need_squeeze:
        img.unsqueeze_(2)

    in_H, in_W, in_C = img.size()
    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
    kernel_width = 4
    kernel = 'cubic'

    # Return the desired dimension order for performing the resize.  The
    # strategy is to perform the resize first along the dimension with the
    # smallest scale factor.
    # Now we do not support this.

    # get weights and indices
    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
        in_H, out_H, scale, kernel, kernel_width, antialiasing)
    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
        in_W, out_W, scale, kernel, kernel_width, antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
    img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)

    sym_patch = img[:sym_len_Hs, :, :]
    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(0, inv_idx)
    img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)

    sym_patch = img[-sym_len_He:, :, :]
    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(0, inv_idx)
    img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(out_H, in_W, in_C)
    kernel_width = weights_H.size(1)
    for i in range(out_H):
        idx = int(indices_H[i][0])
        for j in range(out_C):
            out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
    out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)

    sym_patch = out_1[:, :sym_len_Ws, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, -sym_len_We:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(out_H, out_W, in_C)
    kernel_width = weights_W.size(1)
    for i in range(out_W):
        idx = int(indices_W[i][0])
        for j in range(out_C):
            out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
    if need_squeeze:
        out_2.squeeze_()

    return out_2.numpy()


if __name__ == '__main__':
    img = imread_uint('test.bmp',3)
此次博文,就到这里啦,感谢各位的查阅

📙 博主 AI 领域八大干货专栏、诚不我欺

📙 预祝各位 2022 前途似锦、可摘星辰

🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
❤️ 过去的一年、大家都经历了太多太多、祝你披荆斩棘、未来可期

762.jpg

目录
相关文章
|
6月前
|
人工智能 并行计算 PyTorch
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
346 0
|
6月前
|
PyTorch 算法框架/工具 计算机视觉
用thop去获得模型参数量和计算量(pytorch)
用thop去获得模型参数量和计算量(pytorch)
431 2
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:张量数值计算
探索PyTorch:张量数值计算
|
1月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
34 0
|
5月前
|
机器学习/深度学习 并行计算 PyTorch
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
|
6月前
|
机器学习/深度学习 算法 PyTorch
PyTorch中的动态计算图与静态计算图
【4月更文挑战第18天】PyTorch的动态计算图在运行时构建,灵活且易于调试,适合模型开发,但执行效率相对较低,不易优化。静态计算图预定义,执行效率高,利于优化,适用于对效率要求高的场景,但灵活性和调试难度较大。两者在模型开发与部署阶段各有优势。
|
机器学习/深度学习 存储 PyTorch
【Pytorch】使用pytorch进行张量计算、自动求导和神经网络构建
【Pytorch】使用pytorch进行张量计算、自动求导和神经网络构建
196 1
|
机器学习/深度学习 人工智能 架构师
AI框架跟计算图什么关系?PyTorch如何表达计算图?
目前主流的深度学习框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来。 本节将会以AI概念落地的时候,遇到的一些问题与挑战,因此引出了计算图的概念来对神经网络模型进行统一抽象。接着展开什么是计算,计算图的基本构成来深入了解诶计算图。最后简单地学习PyTorch如何表达计算图。
188 0
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 12 卷积神经网络实现+卷积计算的图解
nn.functional.xxx 需要自己定义 weight,每次调用时都需要手动传入 weight,而 nn.xxx 则不用。
338 0
|
人工智能 算法 开发者
华为开源全场景AI计算框架MindSpore,性能可达 Pytorch+2080Ti 的1.93倍
华为开源全场景AI计算框架MindSpore,性能可达 Pytorch+2080Ti 的1.93倍
427 0

热门文章

最新文章