Part1__机器学习实战学习笔记__KNN算法

简介: 本文首先对KNN算法原理进行简要的介绍,然后在手写体数据集上面测试算法的效果。

step by step

1、kNN原理介绍
2、手写体数据集测试
3、算法优缺点总结


一、kNN原理介绍
  • 1.1 算法概述
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
  • 1.2 示例

图片.png

说明: 测试样本(绿色圆形)应归入要么是第一类的蓝色方形或是第二类的红色三角形。如果k=3(实线圆圈)它被分配给第二类,因为有2个三角形和只有1个正方形在内侧圆圈之内。如果k=5(虚线圆圈)它被分配到第一类(3个正方形与2个三角形在外侧圆圈之内)。

  • 1.3 算法Code Sample
import operator


def classify0(inX, dataSet, labels, k):
    
    """
    参数: 
    - inX: 用于分类的输入向量
    - dataSet: 输入的训练样本集
    - labels: 样本数据的类标签向量
    - k: 用于选择最近邻居的数目
    """
    
    # 获取样本数据数量
    dataSetSize = dataSet.shape[0]

    # 矩阵运算,计算测试数据与每个样本数据对应数据项的差值
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet

    # sqDistances 上一步骤结果平方和
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)

    # 取平方根,得到距离向量
    distances = sqDistances**0.5

    # 按照距离从低到高排序
    sortedDistIndicies = distances.argsort()
    classCount = {}

    # 依次取出最近的样本数据
    for i in range(k):
        # 记录该样本数据所属的类别
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

    # 对类别出现的频次进行排序,从高到低
    sortedClassCount = sorted(
        classCount.items(), key=operator.itemgetter(1), reverse=True)

    # 返回出现频次最高的类别
    return sortedClassCount[0][0]
AI 代码解读
  • 1.4 算法快速测试
import numpy as np

# 创建数据集
def createDataSet():
    group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

group, labels = createDataSet()
print('group:', group)
print('labels:', labels)  # 输出数值

# 测试算法效果
classify0([0, 0], group, labels, 3)
AI 代码解读
快速测试效果
group: [[1.  1.1]
 [1.  1. ]
 [0.  0. ]
 [0.  0.1]]
labels: ['A', 'A', 'B', 'B']
'B'
AI 代码解读
二、手写体数据集测试
  • 2.1 下载数据集
# 在 Jupyter Notebook 单元格中执行,下载并解压数据。
!wget "http://labfile.oss.aliyuncs.com/courses/777/digits.zip"
# 解压缩
!unzip digits.zip
AI 代码解读
  • 2.2 查看解压后文本内容0_1.txt
!cat digits/testDigits/0_1.txt

00000000000000011000000000000000
00000000000111111110000000000000
00000000001111111111100000000000
00000000001111111111110000000000
00000000011111111111111000000000
00000000011111100011111000000000
00000000111110000001111000000000
00000000111110000001111100000000
00000000111110000000111110000000
00000001111110000000111110000000
00000001111110000000011111000000
00000001111110000000001111000000
00000001111110000000001111100000
00000001111100000000001111000000
00000001111000000000001111000000
00000001111000000000001111000000
00000001111000000000000111000000
00000000111100000000000111000000
00000000111100000000000111000000
00000000111100000000000111000000
00000001111000000000011110000000
00000001111000000000011110000000
00000000111000000000011110000000
00000000111110000011111110000000
00000000111110001111111100000000
00000000111111111111111000000000
00000000011111111111111000000000
00000000111111111111100000000000
00000000011111111111000000000000
00000000001111111000000000000000
00000000001111100000000000000000
00000000000100000000000000000000
AI 代码解读
  • 2.3 图像转换为向量
# 为了使用前面两个例子的分类器,我们必须将图像格式化处理为一个向量。我们将把一个 32x32 的二进制图像矩阵转换为 1x1024 的向量
def img2vector(filename):
    # 创建向量
    returnVect = np.zeros((1, 1024))
    # 打开数据文件,读取每行内容
    fr = open(filename)
    for i in range(32):
        # 读取每一行
        lineStr = fr.readline()
        # 将每行前 32 字符转成 int 存入向量
        for j in range(32):
            returnVect[0, 32*i+j] = int(lineStr[j])
            
    return returnVect
AI 代码解读
测试效果

图片.png

  • 2.4 手写体测试
from os import listdir


def handwritingClassTest():
    # 样本数据的类标签列表
    hwLabels = []

    # 样本数据文件列表
    trainingFileList = listdir('digits/trainingDigits')
    trainingFileList = trainingFileList[1:]
    m = len(trainingFileList)
#     print(m)

    # 初始化样本数据矩阵(M*1024)
    trainingMat = np.zeros((m, 1024))

    # 依次读取所有样本数据到数据矩阵
    for i in range(m):
        # 提取文件名中的数字
        fileNameStr = trainingFileList[i]
#         print(fileNameStr)
        fileStr = fileNameStr.split('.')[0]
#         print(fileStr)
#         print((fileStr.split('_')[0]))
        classNumStr = int((fileStr.split('_')[0]))
        hwLabels.append(classNumStr)

        # 将样本数据存入矩阵
        trainingMat[i, :] = img2vector(
            'digits/trainingDigits/%s' % fileNameStr)

    # 循环读取测试数据
    testFileList = listdir('digits/testDigits')
    testFileList = testFileList[1:]

    # 初始化错误率
    errorCount = 0.0
    mTest = len(testFileList)

    # 循环测试每个测试数据文件
    for i in range(mTest):
        # 提取文件名中的数字
        fileNameStr = testFileList[i]
        print(fileNameStr)
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(float((fileStr.split('_')[0])))

        # 提取数据向量
        vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)

        # 对数据文件进行分类
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)

        # 打印 K 近邻算法分类结果和真实的分类
        print("测试样本 %d, 分类器预测: %d, 真实类别: %d" %
              (i+1, classifierResult, classNumStr))

        # 判断K 近邻算法结果是否准确
        if (classifierResult != classNumStr):
            errorCount += 1.0

    # 打印错误率
    print("\n错误分类计数: %d" % errorCount)
    print("\n错误分类比例: %f" % (errorCount/float(mTest)))
AI 代码解读
测试效果

图片.png
图片.png

三、算法优缺点总结

3.1 优点

  • 1、算法原理简单,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
  • 2、可以适配多种类型数据;
  • 3、特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好;
  • 4、和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。

3.2 缺点

  • 1、计算量太大,尤其是特征数非常多的时候(每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最*邻点);
  • 2、样本不平衡的时候,对稀有类别的预测准确率低(当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数);
  • 3、对训练数据依赖度特别大,对训练数据的容错性太差(如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确)
  • 4、可解释性较差(无法给出数据的内在含义)。

更多参考

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)

目录
打赏
0
0
0
0
913
分享
相关文章
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8074 69
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
JVM实战—3.JVM垃圾回收的算法和全流程
本文详细介绍了JVM内存管理与垃圾回收机制,涵盖以下内容:对象何时被垃圾回收、垃圾回收算法及其优劣、新生代和老年代的垃圾回收算法、Stop the World问题分析、核心流程梳理。
JVM实战—3.JVM垃圾回收的算法和全流程
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
64 1
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等