Part1__机器学习实战学习笔记__KNN算法

简介: 本文首先对KNN算法原理进行简要的介绍,然后在手写体数据集上面测试算法的效果。

step by step

1、kNN原理介绍
2、手写体数据集测试
3、算法优缺点总结


一、kNN原理介绍
  • 1.1 算法概述
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
  • 1.2 示例

图片.png

说明: 测试样本(绿色圆形)应归入要么是第一类的蓝色方形或是第二类的红色三角形。如果k=3(实线圆圈)它被分配给第二类,因为有2个三角形和只有1个正方形在内侧圆圈之内。如果k=5(虚线圆圈)它被分配到第一类(3个正方形与2个三角形在外侧圆圈之内)。

  • 1.3 算法Code Sample
import operator


def classify0(inX, dataSet, labels, k):
    
    """
    参数: 
    - inX: 用于分类的输入向量
    - dataSet: 输入的训练样本集
    - labels: 样本数据的类标签向量
    - k: 用于选择最近邻居的数目
    """
    
    # 获取样本数据数量
    dataSetSize = dataSet.shape[0]

    # 矩阵运算,计算测试数据与每个样本数据对应数据项的差值
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet

    # sqDistances 上一步骤结果平方和
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)

    # 取平方根,得到距离向量
    distances = sqDistances**0.5

    # 按照距离从低到高排序
    sortedDistIndicies = distances.argsort()
    classCount = {}

    # 依次取出最近的样本数据
    for i in range(k):
        # 记录该样本数据所属的类别
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

    # 对类别出现的频次进行排序,从高到低
    sortedClassCount = sorted(
        classCount.items(), key=operator.itemgetter(1), reverse=True)

    # 返回出现频次最高的类别
    return sortedClassCount[0][0]
  • 1.4 算法快速测试
import numpy as np

# 创建数据集
def createDataSet():
    group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

group, labels = createDataSet()
print('group:', group)
print('labels:', labels)  # 输出数值

# 测试算法效果
classify0([0, 0], group, labels, 3)
快速测试效果
group: [[1.  1.1]
 [1.  1. ]
 [0.  0. ]
 [0.  0.1]]
labels: ['A', 'A', 'B', 'B']
'B'
二、手写体数据集测试
  • 2.1 下载数据集
# 在 Jupyter Notebook 单元格中执行,下载并解压数据。
!wget "http://labfile.oss.aliyuncs.com/courses/777/digits.zip"
# 解压缩
!unzip digits.zip
  • 2.2 查看解压后文本内容0_1.txt
!cat digits/testDigits/0_1.txt

00000000000000011000000000000000
00000000000111111110000000000000
00000000001111111111100000000000
00000000001111111111110000000000
00000000011111111111111000000000
00000000011111100011111000000000
00000000111110000001111000000000
00000000111110000001111100000000
00000000111110000000111110000000
00000001111110000000111110000000
00000001111110000000011111000000
00000001111110000000001111000000
00000001111110000000001111100000
00000001111100000000001111000000
00000001111000000000001111000000
00000001111000000000001111000000
00000001111000000000000111000000
00000000111100000000000111000000
00000000111100000000000111000000
00000000111100000000000111000000
00000001111000000000011110000000
00000001111000000000011110000000
00000000111000000000011110000000
00000000111110000011111110000000
00000000111110001111111100000000
00000000111111111111111000000000
00000000011111111111111000000000
00000000111111111111100000000000
00000000011111111111000000000000
00000000001111111000000000000000
00000000001111100000000000000000
00000000000100000000000000000000
  • 2.3 图像转换为向量
# 为了使用前面两个例子的分类器,我们必须将图像格式化处理为一个向量。我们将把一个 32x32 的二进制图像矩阵转换为 1x1024 的向量
def img2vector(filename):
    # 创建向量
    returnVect = np.zeros((1, 1024))
    # 打开数据文件,读取每行内容
    fr = open(filename)
    for i in range(32):
        # 读取每一行
        lineStr = fr.readline()
        # 将每行前 32 字符转成 int 存入向量
        for j in range(32):
            returnVect[0, 32*i+j] = int(lineStr[j])
            
    return returnVect
测试效果

图片.png

  • 2.4 手写体测试
from os import listdir


def handwritingClassTest():
    # 样本数据的类标签列表
    hwLabels = []

    # 样本数据文件列表
    trainingFileList = listdir('digits/trainingDigits')
    trainingFileList = trainingFileList[1:]
    m = len(trainingFileList)
#     print(m)

    # 初始化样本数据矩阵(M*1024)
    trainingMat = np.zeros((m, 1024))

    # 依次读取所有样本数据到数据矩阵
    for i in range(m):
        # 提取文件名中的数字
        fileNameStr = trainingFileList[i]
#         print(fileNameStr)
        fileStr = fileNameStr.split('.')[0]
#         print(fileStr)
#         print((fileStr.split('_')[0]))
        classNumStr = int((fileStr.split('_')[0]))
        hwLabels.append(classNumStr)

        # 将样本数据存入矩阵
        trainingMat[i, :] = img2vector(
            'digits/trainingDigits/%s' % fileNameStr)

    # 循环读取测试数据
    testFileList = listdir('digits/testDigits')
    testFileList = testFileList[1:]

    # 初始化错误率
    errorCount = 0.0
    mTest = len(testFileList)

    # 循环测试每个测试数据文件
    for i in range(mTest):
        # 提取文件名中的数字
        fileNameStr = testFileList[i]
        print(fileNameStr)
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(float((fileStr.split('_')[0])))

        # 提取数据向量
        vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)

        # 对数据文件进行分类
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)

        # 打印 K 近邻算法分类结果和真实的分类
        print("测试样本 %d, 分类器预测: %d, 真实类别: %d" %
              (i+1, classifierResult, classNumStr))

        # 判断K 近邻算法结果是否准确
        if (classifierResult != classNumStr):
            errorCount += 1.0

    # 打印错误率
    print("\n错误分类计数: %d" % errorCount)
    print("\n错误分类比例: %f" % (errorCount/float(mTest)))
测试效果

图片.png
图片.png

三、算法优缺点总结

3.1 优点

  • 1、算法原理简单,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
  • 2、可以适配多种类型数据;
  • 3、特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好;
  • 4、和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。

3.2 缺点

  • 1、计算量太大,尤其是特征数非常多的时候(每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最*邻点);
  • 2、样本不平衡的时候,对稀有类别的预测准确率低(当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数);
  • 3、对训练数据依赖度特别大,对训练数据的容错性太差(如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确)
  • 4、可解释性较差(无法给出数据的内在含义)。

更多参考

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)

相关文章
|
5天前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
24 5
|
5天前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
27 3
|
5天前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
14 1
|
17天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
35 2
|
21天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
32 4
|
1月前
|
机器学习/深度学习 算法 数据挖掘
从菜鸟到大师:Scikit-learn库实战教程,模型训练、评估、选择一网打尽!
【9月更文挑战第13天】在数据科学与机器学习领域,Scikit-learn是不可或缺的工具。本文通过问答形式,指导初学者从零开始使用Scikit-learn进行模型训练、评估与选择。首先介绍了如何安装库、预处理数据并训练模型;接着展示了如何利用多种评估指标确保模型性能;最后通过GridSearchCV演示了系统化的参数调优方法。通过这些实战技巧,帮助读者逐步成长为熟练的数据科学家。
76 3
|
1月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
1月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
39 1
|
2月前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
65 1
|
2月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
103 1

热门文章

最新文章