Science子刊:人脑存在加速学习机制,算力赛过最新AI算法

简介: 机器学习虽然受人脑启发,但实验神经科学和ML两个学科已经70年没有沟通。以色列交叉学科团队发现,人脑存在加速学习适应机制,新机制人工神经网络计算能力远超最新AI算法。

微信图片_20220108195205.png


机器学习和深度学习算法的起源,是连接大脑中神经元的突触强度的学习机制,它越来越多地影响着当代生活的几乎所有方面。


半个世纪以前,研究人员试图模仿这些大脑的功能,将神经科学和人工智能联系起来。但是,从那时起,实验神经科学并未直接推动机器学习领域的发展,两个学科一直在相互独立并行发展


在今天发表在《科学报告》的一篇文章中,研究人员称,他们已经重建了实验神经科学和机器学习之间中断70年的桥梁。


微信图片_20220108195207.jpg


我们大脑的高级学习机制可能会导致更高效的AI算法。图片来源:巴伊兰大学Ido Kanter教授


该研究的主要作者,巴伊兰大学物理系和多学科大脑研究中心的Ido Kanter教授说:“据信,大脑中的学习步骤通常可持续数十分钟甚至更长,而在一台计算机中,则可持续一纳秒,或者说是一百万次快一百万次。”


研究人员着手证明两个假设:一,我们总认为大脑学习非常缓慢,这可能是错误的;二,大脑可能有加速学习机制


出乎意料的是,两个假设都被证明是正确的。尽管大脑相对较慢,但其计算能力优于典型的最新人工智能算法


微信图片_20220108195208.png


通过在神经元培养上进行新型人工神经网络实验,研究人员首先证明了增加的训练频率会加速神经元适应过程


这项工作的主要贡献者Shira Sardi表示:“每秒观察10次相同图像的学习效果与每月观察1000次相同图像的效果一样。”


另一位贡献者Roni Vardi博士补充说:“快速重复相同的图像可将我们的大脑适应能力提高到几秒钟而不是几十分钟。大脑的学习甚至可能更快,但这已经超出了我们目前的实验限制。


微信图片_20220108195210.png


其次,研究人员展示了一种受大脑启发的新学习机制这种机制是在人工神经网络上实现的,其中对于连续学习步骤,局部学习步长会增加


在手写数字的简单数据集MNIST上进行了测试,成功率大大超过了常用的机器学习算法,例如手写数字识别,尤其是在提供较小型的数据集进行训练的情况下。

 

实验神经科学与机器学习之间连接的重建,有望在有限的训练示例下促进人工智能(尤其是超快速决策)的发展,对于人类决策,机器人控制和网络优化的许多情况同样适用。


下面,开始论文干货。


论文介绍


突触强度的改变通常持续数十分钟,而神经元(节点)的时钟速度范围约为一秒。尽管大脑相对较慢,但其计算能力优于典型的最新人工智能算法。遵循这种速度/能力悖论,我们通过实验得出基于小型数据集的加速学习机制,这些机制在千兆赫处理器上的利用有望导致超快决策


与现代计算机不同,定义明确的全局时钟不能控制大脑的运行过程。相反,它们是相对事件时间(例如,刺激和诱发的尖峰)的函数。根据神经元计算,使用经过分支的树突树的衰减输入求和,每个神经元将异步输入电信号求和,并在达到阈值时生成短电脉冲(峰值)。每个神经元的突触强度会根据来自其他突触的相对输入时间进行缓慢调整。如果从突触中感应出信号而没有产生尖峰,则基于与来自同一神经元上其他突触的相邻尖峰的相对时序来修改其关联强度。


最近有实验证明,每个神经元都起着独立阈值单元的作用。信号通过树突树到达后,每个阈值单元都会被激活。另外,基于树突信号到达定时实验上观察到的一种新型自适应规则,这类似于当前归因于突触(连接)的慢速自适应机制。这种树突适应发生在更快的时间尺度上:大约需要五分钟,而突触修饰则需要数十分钟或更长时间。

 

研究过程

 

1.实验结果表明,适应率随训练频率的增加而增加。

 

在这项研究中,研究人员将神经元培养种植在添加了突触阻滞剂的多电极阵列上,这种突触阻滞剂可通过其树突细胞在细胞外刺激这个被膜片钳夹住的神经元。


微信图片_20220108195212.png


通过神经元树突在细胞内刺激被研究的神经元,并为每种刺激路径生成不同的尖峰波形。更详尽解释请参阅论文原文“材料和方法”部分。

 

适应过程包括一个训练集:50对刺激。通过进一步测试神经元刺激的响应时间和强度是否正常,我们量化了神经元适应的效果,确定下来了应该以怎样的细胞外刺激幅度来进行研究。


微信图片_20220108195214.png


神经元的正常延迟时间:1-4毫秒

 

微信图片_20220108195215.png


为了量化初始反应,降低细胞外刺激幅度,直到未观察到可靠的诱发峰。

 

2.加速基于生物学启发机制的有监督的可实现学习规则。

 

与生物学机制的暗示相符合,随着训练频率的增加,适应过程将大大加速


微信图片_20220108195217.png


这可能意味着随时间变化的递减适应步长(等式  1):


微信图片_20220108195219.png


当前的适应步骤𝜂𝑡 + 1𝑎 d 𝑎𝑝,等于权重递减的前一个, 𝑡代表离散时间步长,𝜏0是一个常数,1 /τ代表训练频率,而Δ是一个常数,代表当前训练步骤的增量效果。

 

使用可实现规则和二进制分类的有监督在线学习,研究了两种情况:突触适应和树突适应:


微信图片_20220108195221.png

 

我们首先检查了时间依赖的适应步骤(等式 1对加速生物学学习过程的影响。Teacher给student提供了异步输入和二进制输出关系,它们都具有最简单的分类器感知器的相同架构,输出节点由泄漏的集成并发射神经元。

 

结果清楚地表明,泛化误差,ε g的实验启发式的时间相关η(等式 1基本上胜过固定η情景(上图)。这种加速的学习源于以下事实:突触学习中的权重收敛到极限,权重消失或超过阈值。

 

3. 使用在神经网络上测试的MNIST数据库,在无法实现的规则的有监督学习中检查了实验启发式的时间相关学习步骤机制。

 

这个数据库包含大量手写数字示例(如下图),通常用作原型问题,用于量化针对各种图像处理任务的机器学习算法的泛化性能。

 


在这项研究中,我们使用MNIST数据库的一小部分,没有任何数据扩展方法。常用的训练网络由784个输入(代表一个数字28×28像素),一个隐藏层(本研究中为30个单位)和十个代表标签的输出(如上图)组成。常用的学习方法是反向传播策略:


微信图片_20220108195225.png


其中将步长上的权重朝着成本函数的梯度负号C的步长η进行修改。一种改进的方法是动量策略和权重的正则化(上图为等式2):


微信图片_20220108195226.png微信图片_20220108195228.png


动量μ和正则化α在区域[0,1]中是常数,并且 𝜂0η0是一个常数。


我们优化了动量策略(等式2)的绩效 (𝜇 ,𝛼,𝜂0)(μ,α,η0) 使用交叉熵代价函数(材料和方法)对有限的训练数据集进行了比较,并将其性能与以下两种由时间相关的η组成的实验启发式学习机制进行了比较。


论文中对加速度还有更详细的公式给出,篇幅所限,本文就不做更多介绍了。

 

结果:在线训练集由300个随机选择的示例组成:每个标签以随机顺序出现30次。经过300个学习步骤,加速方法的性能优于动量法超过25%,测试精度分别从约0.43提高到0.54。


微信图片_20220108195230.png

 

对于给定数量的网络更新,结果表明,较小的示例集可产生更多信息。为了最大程度地提高在线场景(尤其是小型数据集)的测试准确性,平衡的示例集和平衡的时间训练顺序是重要的组成部分。

 

论文结论


基于连贯的连续梯度增加的η,针对小组的训练示例,脑启发式的加速学习机制优于现有的通用ML策略。在各种成本函数上运行(例如平方成本函数)均会出现一致的结果,但是性能会相对下降(见下图)。


微信图片_20220108195232.png


因为给定数据集的最大性能取决于所选的加速方法(见下图),在培训过程中调整学习方法可以提高绩效。


微信图片_20220108195234.png


但是,除了可能的用于更新η的高级非线性函数外,在网络更新次数高的情况下,加速方法的最终调度和使性能最大化的受训实例的排序也值得进一步研究。


实验神经科学和ML的桥梁有望进一步推进利用有限的数据库进行决策,这是许多方面的现实:人类活动、机器人控制和网络优化

 

本文研究机构

 

巴伊兰大学缩写BIU,建立于1955年,位于以色列拉马特甘,是一所公立大学,也是目前以色列规模第二大的学术研究机构。


微信图片_20220108195236.png

参考链接:


研究人员重建了神经科学与人工智能之间的桥梁:


https://techxplore.com/news/2020-04-rebuild-bridge-neuroscience-artificial-intelligence.html

 

论文参见:《科学报告》:脑实验暗示适应机制优于通用AI学习算法


https://www.nature.com/articles/s41598-020-63755-5

相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
ProtGPS:MIT再造生命科学新基建!蛋白质AI一键预测定位+设计新序列,登Nature子刊
ProtGPS 是麻省理工学院和怀特黑德研究所联合开发的蛋白质语言模型,能够预测蛋白质在细胞内的亚细胞定位,并设计具有特定亚细胞定位的新型蛋白质。
43 17
ProtGPS:MIT再造生命科学新基建!蛋白质AI一键预测定位+设计新序列,登Nature子刊
|
27天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
77 13
|
28天前
|
存储 人工智能 自然语言处理
AI 工程学习 - 三张图说明白什么是 RAG
RAG(检索增强生成)是一种结合信息检索和生成模型的自然语言处理框架,通过引入外部知识库(如文档库、数据库等),增强生成模型的回答准确性与相关性。其核心在于避免模型仅依赖训练数据产生不准确或“幻觉”内容,而是通过实时检索外部资料,确保回答更精准、丰富且上下文相关。RAG的实现包括建立索引(清洗、分割、嵌入存储)和检索生成(计算相似度、选择最优片段、整合提示词模板提交给大模型)。
114 0
|
1月前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。
|
1月前
|
机器学习/深度学习 人工智能 编解码
ByteDance Research登Nature子刊:AI+冷冻电镜,揭示蛋白质动态
在生物医学领域,蛋白质的结构与功能研究至关重要。ByteDance Research团队开发的CryoSTAR软件,结合AI与冷冻电镜技术,通过深度学习模型、结构先验和异质性重构算法,成功解析了蛋白质的动态行为,尤其在处理结构异质性方面表现出色。该软件已在多个蛋白质体系中取得显著成果,如TRPV1通道蛋白的动态变化研究,为理解蛋白质功能及疾病机制提供了新思路。论文链接:https://www.nature.com/articles/s41592-024-02486-1
85 26
|
2月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
115 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
2月前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
111 1
|
2月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
99 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的个性化学习路径优化
在当前教育领域,个性化学习正逐渐成为一种趋势。本文探讨了如何利用人工智能技术来优化个性化学习路径,提高学习效率和质量。通过分析学生的学习行为、偏好和表现,AI可以动态调整学习内容和难度,实现真正的因材施教。文章还讨论了实施这种技术所面临的挑战和潜在的解决方案。
178 7
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新

热门文章

最新文章