Science子刊:人脑存在加速学习机制,算力赛过最新AI算法

简介: 机器学习虽然受人脑启发,但实验神经科学和ML两个学科已经70年没有沟通。以色列交叉学科团队发现,人脑存在加速学习适应机制,新机制人工神经网络计算能力远超最新AI算法。

微信图片_20220108195205.png


机器学习和深度学习算法的起源,是连接大脑中神经元的突触强度的学习机制,它越来越多地影响着当代生活的几乎所有方面。


半个世纪以前,研究人员试图模仿这些大脑的功能,将神经科学和人工智能联系起来。但是,从那时起,实验神经科学并未直接推动机器学习领域的发展,两个学科一直在相互独立并行发展


在今天发表在《科学报告》的一篇文章中,研究人员称,他们已经重建了实验神经科学和机器学习之间中断70年的桥梁。


微信图片_20220108195207.jpg


我们大脑的高级学习机制可能会导致更高效的AI算法。图片来源:巴伊兰大学Ido Kanter教授


该研究的主要作者,巴伊兰大学物理系和多学科大脑研究中心的Ido Kanter教授说:“据信,大脑中的学习步骤通常可持续数十分钟甚至更长,而在一台计算机中,则可持续一纳秒,或者说是一百万次快一百万次。”


研究人员着手证明两个假设:一,我们总认为大脑学习非常缓慢,这可能是错误的;二,大脑可能有加速学习机制


出乎意料的是,两个假设都被证明是正确的。尽管大脑相对较慢,但其计算能力优于典型的最新人工智能算法


微信图片_20220108195208.png


通过在神经元培养上进行新型人工神经网络实验,研究人员首先证明了增加的训练频率会加速神经元适应过程


这项工作的主要贡献者Shira Sardi表示:“每秒观察10次相同图像的学习效果与每月观察1000次相同图像的效果一样。”


另一位贡献者Roni Vardi博士补充说:“快速重复相同的图像可将我们的大脑适应能力提高到几秒钟而不是几十分钟。大脑的学习甚至可能更快,但这已经超出了我们目前的实验限制。


微信图片_20220108195210.png


其次,研究人员展示了一种受大脑启发的新学习机制这种机制是在人工神经网络上实现的,其中对于连续学习步骤,局部学习步长会增加


在手写数字的简单数据集MNIST上进行了测试,成功率大大超过了常用的机器学习算法,例如手写数字识别,尤其是在提供较小型的数据集进行训练的情况下。

 

实验神经科学与机器学习之间连接的重建,有望在有限的训练示例下促进人工智能(尤其是超快速决策)的发展,对于人类决策,机器人控制和网络优化的许多情况同样适用。


下面,开始论文干货。


论文介绍


突触强度的改变通常持续数十分钟,而神经元(节点)的时钟速度范围约为一秒。尽管大脑相对较慢,但其计算能力优于典型的最新人工智能算法。遵循这种速度/能力悖论,我们通过实验得出基于小型数据集的加速学习机制,这些机制在千兆赫处理器上的利用有望导致超快决策


与现代计算机不同,定义明确的全局时钟不能控制大脑的运行过程。相反,它们是相对事件时间(例如,刺激和诱发的尖峰)的函数。根据神经元计算,使用经过分支的树突树的衰减输入求和,每个神经元将异步输入电信号求和,并在达到阈值时生成短电脉冲(峰值)。每个神经元的突触强度会根据来自其他突触的相对输入时间进行缓慢调整。如果从突触中感应出信号而没有产生尖峰,则基于与来自同一神经元上其他突触的相邻尖峰的相对时序来修改其关联强度。


最近有实验证明,每个神经元都起着独立阈值单元的作用。信号通过树突树到达后,每个阈值单元都会被激活。另外,基于树突信号到达定时实验上观察到的一种新型自适应规则,这类似于当前归因于突触(连接)的慢速自适应机制。这种树突适应发生在更快的时间尺度上:大约需要五分钟,而突触修饰则需要数十分钟或更长时间。

 

研究过程

 

1.实验结果表明,适应率随训练频率的增加而增加。

 

在这项研究中,研究人员将神经元培养种植在添加了突触阻滞剂的多电极阵列上,这种突触阻滞剂可通过其树突细胞在细胞外刺激这个被膜片钳夹住的神经元。


微信图片_20220108195212.png


通过神经元树突在细胞内刺激被研究的神经元,并为每种刺激路径生成不同的尖峰波形。更详尽解释请参阅论文原文“材料和方法”部分。

 

适应过程包括一个训练集:50对刺激。通过进一步测试神经元刺激的响应时间和强度是否正常,我们量化了神经元适应的效果,确定下来了应该以怎样的细胞外刺激幅度来进行研究。


微信图片_20220108195214.png


神经元的正常延迟时间:1-4毫秒

 

微信图片_20220108195215.png


为了量化初始反应,降低细胞外刺激幅度,直到未观察到可靠的诱发峰。

 

2.加速基于生物学启发机制的有监督的可实现学习规则。

 

与生物学机制的暗示相符合,随着训练频率的增加,适应过程将大大加速


微信图片_20220108195217.png


这可能意味着随时间变化的递减适应步长(等式  1):


微信图片_20220108195219.png


当前的适应步骤𝜂𝑡 + 1𝑎 d 𝑎𝑝,等于权重递减的前一个, 𝑡代表离散时间步长,𝜏0是一个常数,1 /τ代表训练频率,而Δ是一个常数,代表当前训练步骤的增量效果。

 

使用可实现规则和二进制分类的有监督在线学习,研究了两种情况:突触适应和树突适应:


微信图片_20220108195221.png

 

我们首先检查了时间依赖的适应步骤(等式 1对加速生物学学习过程的影响。Teacher给student提供了异步输入和二进制输出关系,它们都具有最简单的分类器感知器的相同架构,输出节点由泄漏的集成并发射神经元。

 

结果清楚地表明,泛化误差,ε g的实验启发式的时间相关η(等式 1基本上胜过固定η情景(上图)。这种加速的学习源于以下事实:突触学习中的权重收敛到极限,权重消失或超过阈值。

 

3. 使用在神经网络上测试的MNIST数据库,在无法实现的规则的有监督学习中检查了实验启发式的时间相关学习步骤机制。

 

这个数据库包含大量手写数字示例(如下图),通常用作原型问题,用于量化针对各种图像处理任务的机器学习算法的泛化性能。

 


在这项研究中,我们使用MNIST数据库的一小部分,没有任何数据扩展方法。常用的训练网络由784个输入(代表一个数字28×28像素),一个隐藏层(本研究中为30个单位)和十个代表标签的输出(如上图)组成。常用的学习方法是反向传播策略:


微信图片_20220108195225.png


其中将步长上的权重朝着成本函数的梯度负号C的步长η进行修改。一种改进的方法是动量策略和权重的正则化(上图为等式2):


微信图片_20220108195226.png微信图片_20220108195228.png


动量μ和正则化α在区域[0,1]中是常数,并且 𝜂0η0是一个常数。


我们优化了动量策略(等式2)的绩效 (𝜇 ,𝛼,𝜂0)(μ,α,η0) 使用交叉熵代价函数(材料和方法)对有限的训练数据集进行了比较,并将其性能与以下两种由时间相关的η组成的实验启发式学习机制进行了比较。


论文中对加速度还有更详细的公式给出,篇幅所限,本文就不做更多介绍了。

 

结果:在线训练集由300个随机选择的示例组成:每个标签以随机顺序出现30次。经过300个学习步骤,加速方法的性能优于动量法超过25%,测试精度分别从约0.43提高到0.54。


微信图片_20220108195230.png

 

对于给定数量的网络更新,结果表明,较小的示例集可产生更多信息。为了最大程度地提高在线场景(尤其是小型数据集)的测试准确性,平衡的示例集和平衡的时间训练顺序是重要的组成部分。

 

论文结论


基于连贯的连续梯度增加的η,针对小组的训练示例,脑启发式的加速学习机制优于现有的通用ML策略。在各种成本函数上运行(例如平方成本函数)均会出现一致的结果,但是性能会相对下降(见下图)。


微信图片_20220108195232.png


因为给定数据集的最大性能取决于所选的加速方法(见下图),在培训过程中调整学习方法可以提高绩效。


微信图片_20220108195234.png


但是,除了可能的用于更新η的高级非线性函数外,在网络更新次数高的情况下,加速方法的最终调度和使性能最大化的受训实例的排序也值得进一步研究。


实验神经科学和ML的桥梁有望进一步推进利用有限的数据库进行决策,这是许多方面的现实:人类活动、机器人控制和网络优化

 

本文研究机构

 

巴伊兰大学缩写BIU,建立于1955年,位于以色列拉马特甘,是一所公立大学,也是目前以色列规模第二大的学术研究机构。


微信图片_20220108195236.png

参考链接:


研究人员重建了神经科学与人工智能之间的桥梁:


https://techxplore.com/news/2020-04-rebuild-bridge-neuroscience-artificial-intelligence.html

 

论文参见:《科学报告》:脑实验暗示适应机制优于通用AI学习算法


https://www.nature.com/articles/s41598-020-63755-5

相关文章
|
1月前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
|
18天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
32 6
【AI系统】QNNPack 算法
|
18天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
44 5
【AI系统】Im2Col 算法
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
30 2
【AI系统】Winograd 算法
|
7天前
|
人工智能 算法
AI+脱口秀,笑点能靠算法创造吗
脱口秀是一种通过幽默诙谐的语言、夸张的表情与动作引发观众笑声的表演艺术。每位演员独具风格,内容涵盖个人情感、家庭琐事及社会热点。尽管我尝试用AI生成脱口秀段子,但AI缺乏真实的情感共鸣和即兴创作能力,生成的内容显得不够自然生动,难以触及人心深处的笑点。例如,AI生成的段子虽然流畅,却少了那份不期而遇的惊喜和激情,无法真正打动观众。 简介:脱口秀是通过幽默语言和夸张表演引发笑声的艺术形式,AI生成的段子虽流畅但缺乏情感共鸣和即兴创作力,难以达到真人表演的效果。
|
20天前
|
存储 人工智能 安全
AI时代,存力 or 算力 哪个更重要
本文探讨了AI技术发展中算力与存力的重要性。算力指计算能力,对处理大数据和实时计算至关重要;存力则是数据存储能力,确保数据安全可靠,支持后续分析。两者相辅相成,共同推动AI技术的快速发展,缺一不可。
|
1月前
|
人工智能 自然语言处理 前端开发
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
VideoChat 是一款智能音视频内容解读助手,支持批量上传音视频文件并自动转录为文字。通过 AI 技术,它能快速生成内容总结、详细解读和思维导图,并提供智能对话功能,帮助用户更高效地理解和分析音视频内容。
119 6
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
|
1月前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
22天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
45 3
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的个性化学习路径优化
在当前教育领域,个性化学习正逐渐成为一种趋势。本文探讨了如何利用人工智能技术来优化个性化学习路径,提高学习效率和质量。通过分析学生的学习行为、偏好和表现,AI可以动态调整学习内容和难度,实现真正的因材施教。文章还讨论了实施这种技术所面临的挑战和潜在的解决方案。
72 7