人工智能和机器学习在健康行业中的应用

简介: 机器学习和人工智能将使医疗保健行业向新一代医疗保健的未来迈进一大步,并且可以逐步应对安全性、数据存储、准确性等挑战。作为开发人员,需要考虑创建一个改变工作和生活的医疗保健应用程序以满足行业需求。

为了了解人工智能和机器学习在医疗保健行业中的作用,需要探索这两种技术在医疗保健行业中的优势和功能。


医疗保健行业在过去几年发生了重大转变。机器学习和人工智能的扩展和影响催生了新的生态系统。尽管如此,大多数情况下,这两种技术被描述为医疗保健行业的魔杖。


移动健康应用的兴起



移动健康(mHealth)是指通过移动设备提供的公共卫生和药物递送服务。随着数字化逐渐覆盖所有细分市场,医疗保健行业的移动应用程序出现了显著增长。


智能手机的普及很快带动了移动健康应用的市场增长。根据调查,2020年全球移动健康行业的市场规模达到400.5亿美元,预计从2021年到2030年将以17.7%的复合年增长率增长。移动健康领域已经为患者和医疗中心提供了超过31000个与健康相关的应用程序。而且这个数字每天都在增长。


作为一个广阔的行业领域,移动健康提供了更多的商业和投资机会。尽管如此,该细分市场仍缺乏新的技术和商业模式。目前在美国、英国、德国、加拿大、以色列、荷兰、丹麦具有巨大的市场潜力。凭借极具吸引力的市场规模,移动健康将很快成为一个生态系统。它将提供数字解决方案,并提高生活质量。


(1)移动健康保健和技术


诸如药物递送或远程医疗之类的移动健康应用程序都旨在加快医疗服务速度。这个细分市场和移动技术已经发生了有益的变化。


(2)紧急医疗服务(EMS)的数据收集


在医疗机构的传统工作流程中需要大量文书工作,这是首先要改进的地方。数据收集和存储的数字化实现了实时数据访问,它有助于创建即时报告的无延迟性能。


(3)电子健康记录(EHR)减少文书工作的做法


通过将记录实现数字化,可以节省医生的时间和精力为患者服务。电子健康记录(EHR)是实现变革的顶级技术。该服务还与健康移动应用程序和药品交付应用程序集成,即使在医院之外也可以注册患者数据。该技术将遵循HIPPA(健康保险流通与责任法案)控制。该法案致力于实施数字技术确保患者的电子数据隐私。


(4)使用药品配送应用程序及时用药


数字医疗系统可以在医院内部和家中创造患者体验。药品配送等与医药相关的应用程序不仅仅是配送应用程序,还可以保存患者的病史、电子处方、在线支付账单等。


(5)健康追踪器和可穿戴设备


健康追踪器和可穿戴设备不仅有趣,而且发挥重要作用。美国食品药品监督管理局(FDA)批准的健康追踪器可以生成实时数据。该算法修复了单一变化,并警告可能的危险。大众市场的可穿戴设备用于跟踪个人健康状况。相关的移动应用程序支持和处理收集到的数据并将其传输到后端服务器。在这个不间断的过程中将创建报告并帮助用户跟踪更改。


(6)移动健康中使用了哪些技术?


智能医疗保健现在正在通过应用程序和物联网技术提高效率。可穿戴设备、智能手表、健康设备和健身追踪器都是物联网设备。它们都提供持续的数据收集和与移动应用程序的同步。该技术现在可以将患者的数据发送给医生,而无需亲自到场,并继续进行进一步的治疗。


大多数移动健康功能是由人工智能和机器学习驱动的。这两项顶级技术保证了医疗保健的未来。


(7)2022~2030年移动健康中人工智能和机器学习应用的统计数据


人工智能/机器学习改变游戏规则的技术对移动医疗的影响带来了显著的市场增长。预计到2030年,该市场规模将超过3589.2万美元,而2021年的市场规模只有66亿美元。


  • 80%用于医疗保健移动应用程序的技术将基于人工智能。
  • 到2025年,人工智能和机器学习将取代美国16%的工作岗位。
  • 到2025年,基于人工智能的可穿戴设备市场将产生1800亿美元的收入。
  • 到2030年,中国将占据全球人工智能市场的最大份额(26%)。
  • 人工智能应用将为美国医疗保健行业节省1500亿美元。


移动医疗行业中的人工智能



人工智能在医疗保健流程的自动化方面具有最大的潜力,而全球很快就会出现990万医生缺口,因此医疗保健行业需要实现自动化。人工智能具有为计算机程序完成任务的能力,通常与人类智能相关联。这种技术提供了一组算法,使设备能够感知、收集数据并进行预测。


医疗保健行业的人工智能用例


目前,移动医疗行业中有数十个人工智能用例使应用程序更加实用:


  • 自动诊断和处方。这项技术使聊天机器人能够为患者和医生提供帮助。基于人工智能的聊天机器人可以为患者提供初步诊断或处方。在患者能够与医生交谈之前,可以获得基于症状的答案。


  • 处方审核。处方可以通过人工智能系统自动化审核并保存,该技术可用于医药价格应用程序。


  • 实时优先排序。基于人工智能的患者数据透视分析可以实现精确的病例优先级排序和分类。


  • 个性化护理和药物治疗。人工智能处理患者数据并生成最佳治疗计划。因此,这项技术提高了护理效率。


  • 数据分析。人工智能的主要实践是数据分析。这项技术促进了保存临床数据、发现见解和建议行动的过程。


  • 客户服务聊天机器人。借助人工智能,客户服务可以更有效地运作。它将提供有关药物递送、预约、账单支付等的即时答案。


  • 创建新角色。随着移动健康和人工智能的新生态系统,该行业将需要新的人才来处理这项技术。为了支持这项技术,数据工程师和应用程序开发人员的需求量很大。


医疗保健行业的机器学习



医疗保健行业最大的技术突破是机器学习的实施。这些技术为以智能手机为中心的一代实现了医疗保健数字化。


该技术旨在构建无需人工干预即可运行的自主智能设备。机器学习基于一组支持人工智能过程的算法。反过来,后者使机器能够独立运行。


医疗保健行业的机器学习用例



在人工智能技术的支持下,机器学习已经在移动医疗中得到应用。机器学习模仿人脑的功能。而如今使用神经网络来检测人类无法看到的变化。以下是一些示例:


  • 药物发现。机器学习的首批成功实施之一是精准医学。这是一种新的测序方法,可确保药物对患者产生疗效。


  • 个性化治疗。就像每个人对食物的反应不同一样,它对治疗和药物的反应也不同。对一些人来说,治疗可能是有效的,而对另一些人来说,它可能毫无用处甚至危险。机器学习将有助于根据患者的病史生成个性化治疗。实时数据监控将根据异常情况调整治疗。


  • 调整行为。通过机器学习,可以完成日常活动。从长远来看,支持应用程序会提醒可能对健康有害的活动。


  • 改进健康记录。机器学习的基本和最优先结果是保留健康记录。该技术通过OCR识别技术对数据进行分类。


  • 行为监测。实施机器学习技术的最新实践之一是对患者的行为监测。它揭示了对健康身心很重要的生活方式和行为变化。这些解决方案是具有支持移动应用程序的可穿戴设备。


结 语


机器学习和人工智能将使该行业向新一代医疗保健的未来迈进一大步,并且可以逐步应对安全性、数据存储、准确性等挑战。作为开发人员,需要考虑创建一个改变工作和生活的医疗保健应用程序以满足行业需求。


  • 与医疗保健标准相匹配的应用程序。保持标准以维护隐私和功能并成为值得信赖的产品。


  • 规划设计。直观的交互设计是推动健康应用价值的主要因素。


  • 与其他平台的集成。与现有软件集成的能力是获得应用程序认可的主要因素。


移动健康具有巨大的发展潜力,凭借先进的技能和知识,将成为全球医疗保健市场的一部分。


相关文章
|
8月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
10月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
289 21
|
4月前
|
机器学习/深度学习 人工智能 运维
阿里云PAI人工智能平台介绍、优势及收费标准,手动整理
阿里云人工智能平台PAI是面向开发者和企业的机器学习与深度学习工程平台,提供数据标注、模型构建、训练、部署及推理优化等全链路服务。内置140+优化算法,支持PyTorch、TensorFlow等多种框架,具备高性能训练与推理能力,适用于自动驾驶、金融风控、智能推荐、智慧医疗等多个行业场景。PAI提供零代码开发、可视化建模、大模型一键部署等功能,助力企业快速构建AI应用。支持多种购买方式,如按量付费、预付费等,满足不同业务需求。
|
10月前
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
446 13
|
11月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
281 27
|
11月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在客服领域有哪些应用?
人工智能正在彻底改变着传统客服行业,它不仅拓展了业务边界,还推动着整个行业向更高效、更人性化方向迈进。
642 7
|
11月前
|
机器学习/深度学习 数据采集 人工智能
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
453 11
|
11月前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
1291 10

热门文章

最新文章