3D深度学习火了!NVIDIA NeurIPS论文:训练AI迅速将2D图像转换成3D模型

简介: 3D深度学习火了!NVIDIA NeurIPS论文:训练AI迅速将2D图像转换成3D模型

NVIDIA的研究团队开发出一个人工智能系统,它可以在不需要任何3D训练数据的情况下,预测2D图像的3D特征。该项研究成果会在NIPS(Neural Information Processing Systems)年会上公布;今年的NIPS年会有超过13000名与会者,是今年最大的人工智能研究会议。


这项工作由加拿大向量学院(Vector Institute)、多伦多大学(University of Toronto)、Nvidia Research、阿尔托大学(Aalto University)共同完成,相关研究的细节呈现在论文《Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer》中。


image.png

论文链接:https://nv-tlabs.github.io/DIB-R/files/diff_shader.pdf


Nvidia的人工智能总监和论文合著者Sanja Fidler说:“公司下一步可能会尝试将可微渲染框架(Differentiable Rendering Framework,DIB-R)扩展到更复杂的任务,比如为多个对象或整个场景渲染三维模型;这样的工作可以应用于游戏、AR/VR、机器人或目标跟踪系统中。”


Fidler还说:“关于三维深度学习目前很多公司已经做了一些工作,如Facebook AI Research与DeepMind也能将二维转化成三维AI,但DIB-R是第一个可以通过二维图像预测几个关键的三维特征(如对象的形状、三维几何、颜色和纹理)的神经或者深度学习架构之一。因此尽管之前有很多研究,但没有一个能真正同时预测所有这些关键属性的研究;它们不是专注于预测几何形状就是专注于预测颜色,而不是同时预测形状、颜色、纹理和光线;而我们的这项研究是真正完成了——不是完全完成,但却是对一个场景中的对象更加完整的理解。


image.png


NeurIPS的一项相关工作是试图根据人们的声音来预测他们的“声之形”。


Fidler说:“我认为这是一个非常有趣的领域,我们没有在这篇特别的论文中解决这个问题;但就深度学习而言,这是另一个有趣的输入,当提供给神经结构后就可以得到非常好的三维信息;如今,我认为这绝对是有效的。


DIB-R是在Nvidia今年发布Kaolin(Kaolin是Nvidia的三维深度学习库,拥有一系列的模型来帮助开发人员开始使用神经网络进行三维处理)之后发布的,Nvidia会在NeurIPS上公布五篇论文:《Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer》、《Joint-task Self-supervised Learning for Temporal Correspondence》、《Dancing to Music》、《Few-shot Video-to-Video Synthesis》、《Exact Gaussian Processes on a Million Data Points》。


参考资料:

https://venturebeat.com/2019/12/09/nvidia-trains-ai-to-transform-2d-images-into-3d-models/


相关文章
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
20 5
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
10 1
|
5天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
5天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
16 2
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
20 2
|
机器学习/深度学习 人工智能 开发工具
打造AI训练基础平台!Unity推出Machine Learning Agents
但在未来,人工智能游戏选手或许将会面临新的对手:另一个人工智能。今天,全球最大的3D游戏引擎Unity宣布发布Unity Machine Learning Agents,通过将其游戏引擎与TensorFlow等机器学习框架相连接
1679 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
27 1

热门文章

最新文章