【小Y学算法】⚡️每日LeetCode打卡⚡️——28.二叉树的最大深度

简介: 📢前言🌲原题样例🌻C#方法:深度优先搜索🌻Java 方法一:深度优先搜索🌻Java 方法二:广度优先搜索💬总结🚀往期优质文章分享

📢前言

🚀 算法题 🚀

🌲 每天打卡一道算法题,既是一个学习过程,又是一个分享的过程😜

🌲 提示:本专栏解题 编程语言一律使用 C# 和 Java 两种进行解题

🌲 要保持一个每天都在学习的状态,让我们一起努力成为算法大神吧🧐!

🌲 今天是力扣算法题持续打卡第28天🎈!

🚀 算法题 🚀

🌲原题样例

给定一个二叉树,找出其最大深度。


二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。


说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树` [3,9,20,null,null,15,7]`
    3
   / \
  9  20
    /  \
   15   7

返回它的最大深度 3 。


🌻C#方法:深度优先搜索

思路解析


该题是要求二叉树的最大深度,我们可以先求出左子树和右子树的深度 l 和 r


那就可以计算出二叉树的最大深度了:max( l,r )+1


而左子树和右子树的最大深度又可以以同样的方式进行计算。


因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。


具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。


代码:

public class Solution {
public int MaxDepth(TreeNode root)
        {
            //递归终止情况:节点为空
            if (root == null)
            {
                return 0;
            }
            else
            {
                int leftDepth = MaxDepth(root.left);
                int rightDepth = MaxDepth(root.right);
                return Math.Max(leftDepth, rightDepth) + 1;
            }
        }
}

执行结果

通过
执行用时:100 ms,在所有 C# 提交中击败了43.46%的用户
内存消耗:25.7 MB,在所有 C# 提交中击败了10.73%的用户

复杂度分析

时间复杂度:O(n)
空间复杂度:O(n)

🌻Java 方法一:深度优先搜索

思路解析

该题是要求二叉树的最大深度,我们可以先求出左子树和右子树的深度 l 和 r


那就可以计算出二叉树的最大深度了:max( l,r )+1


而左子树和右子树的最大深度又可以以同样的方式进行计算。


因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。


具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。


代码:

class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        } else {
            int leftHeight = maxDepth(root.left);
            int rightHeight = maxDepth(root.right);
            return Math.max(leftHeight, rightHeight) + 1;
        }
    }
}

执行结果

通过
执行用时:0 ms,在所有 Java  提交中击败了100.00%的用户
内存消耗:38.3 MB,在所有 Java 提交中击败了56.45%的用户
• 1
• 2
• 3

复杂度分析

时间复杂度:O( n )其中 n 为二叉树节点的个数。每个节点在递归中只被遍历一次。
空间复杂度:O( height ) 其中height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

🌻Java 方法二:广度优先搜索

思路解析


也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。


每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans 来维护拓展的次数,该二叉树的最大深度即为ans。


代码:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}

执行结果

通过
执行用时:1 ms,在所有 Java  提交中击败了19.10%的用户
内存消耗:38.3 MB,在所有 Java 提交中击败了60.95%的用户

复杂度分析

时间复杂度:O(n),其中 nn 为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。
空间复杂度:O(n),此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)。

💬总结

  • 今天是力扣算法题打卡的第二十八天!
  • 文章采用 C#Java 两种编程语言进行解题
  • 一些方法也是参考力扣大神写的,也是边学习边分享,再次感谢算法大佬们
  • 那今天的算法题分享到此结束啦,明天再见!


相关文章
|
8天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
11天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
33 5
|
11天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
14天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
23 2
|
1月前
【LeetCode 31】104.二叉树的最大深度
【LeetCode 31】104.二叉树的最大深度
19 2
|
1月前
【LeetCode 29】226.反转二叉树
【LeetCode 29】226.反转二叉树
16 2
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
22 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
24 0