典型相关分析(Canonical Correlation Analysis,CCA)原理及Python、MATLAB实现

简介: 典型相关分析(Canonical Correlation Analysis,CCA)原理及Python、MATLAB实现

随着对CCA的深入研究,是时候对CCA进行一下总结了。

本菜鸡主要研究方向为故障诊断,故会带着从应用角度进行理解。

image.png

典型相关分析

基本原理

从字面意义上理解CCA,我们可以知道,简单说来就是对不同变量之间做相关分析。较为专业的说就是,一种度量两组变量之间相关程度的多元统计方法。


关于相似性度量距离问题,在这里有一篇Blog可以参考参考。


首先,从基本的入手。


当我们需要对两个变量X , Y 进行相关关系分析时,则常常会用到相关系数来反映。学过概率统计的小伙伴应该都知道的吧。还是解释一下。


相关系数:是一种用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

image.png

image.png

复习了一下大学本科概率统计知识,那么,如果我们需要分析的对象是两组或者多组向量,又该怎么做呢?

CCA的数学表达

image.png

image.png

我们会得到一个这样的矩阵:

image.png

这样的话,我们把每个变量的相关系数都求了出来,不知道会不会和我一样觉得这样很繁琐呢。如果我们能找到两组变量之间的各自的线性组合,那么我们就只分析讨论线性组合之间的相关分析。


典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。


现在我们利用主成分分析(PCA)的思想,可以把多个变量与多个变量之间的相关转化成两个变量之间的相关。

image.png

image.png

image.png

image.png

image.png

典型相关分析最朴素的思想:首先分别在每组变量中找出第一对典型变量,使其具有最大相关性,然后在每组变量中找出第二对典型变量,使其分别与本组内的第一对典型变量不相关,第二对本身具有次大的相关性。如此下去,直到进行到K步,两组变量的相关系被提取完为止,可以得到K组变量。

So

image.png

image.png

image.png

image.png

image.png

image.png

image.png

典型相关系数及变量的求法

image.png

(一起来复习高数–拉格朗日乘数法)


前提条件,我们有个计算公式,约束条件也有了,故这是一个求解条件极值题呀!!!


列出我们的拉格朗日函数:

image.png

image.png

image.png

也就是

image.png

image.png

image.png

image.png

image.png

image.png

我们由式

image.png

可得

image.png

image.png

image.png

image.png

image.png

image.png

典型相关分析应用

基于 CCA 的故障检测方法

对于CCA应用在故障检测中,基于 CCA 的故障检测方法可以视为基于 PCA 和基于 PLS 故障检测方法的一种扩展。


基本思想:是利用典型相关关系构建一个残差发生器, 通过对残差信号的评价做出故障检测的相应决策。该方法中提出了 4 个统计量, 将输入空间分为两个部分, 即与输出空间相关的子空间和与输出空间不相关的子空间;同理,将输出空间分为两个部分, 即与输入空间相关的子空间和与输入空间不相关的子空间。

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

结合 CCA 方法, 可得:

image.png

image.png

但是在实际系统中, 测量变量难免受到噪声影响, 两者之间的相关性可表示为:

image.png

image.png

image.png

image.png

image.png

image.png

同理, 还可以得到另一残差向量

image.png

其协方差矩阵

image.png

由式(9)(11) 可以看出, 残差 r1和 r2的协方差相同。 对于故障检测, 可构造如下两个统计量:

image.png

image.png

image.png

同理, 为了检测发生在输入空间且与输出不相关的那部分故障, 可构造另一统计量

image.png

image.png

image.png

Python代码

## 通过sklearn工具包内置的CCA实现
import numpy as np
from sklearn.cross_decomposition import CCA
from icecream import ic   # ic用于显示,类似于print
A = [[3, 4, 5, 6, 7] for i in range(2000)] 
B = [[8, 9, 10, 11, 12] for i in range(2000)] 
# 注意在A、B中的数为输入变量及输出变量参数
# 建模
cca = CCA(n_components=1)  # 若想计算第二主成分对应的相关系数,则令cca = CCA(n_components=2)
# 训练数据
cca.fit(X, Y)
# 降维操作
X_train_r, Y_train_r = cca.transform(X, Y)
#输出相关系数
ic(np.corrcoef(X_train_r[:, 0], Y_train_r[:, 0])[0, 1])  #如果想计算第二主成分对应的相关系数 print(np.corrcoef(X_train_r[:, 1], Y_train_r[:, 1])[0, 1])

另有一个包含可视化CCA的Python代码在 这里

Matlab代码

function[ccaEigvector1, ccaEigvector2] = CCA(data1, data2)
dataLen1 = size(data1, 2);
dataLen2 = size(data2, 2);
% Construct the scatter of each view and the scatter between them
data = [data1 data2];
covariance = cov(data);
% Sxx = covariance(1 : dataLen1, 1 : dataLen1) + eye(dataLen1) * 10^(-7);
Sxx = covariance(1 : dataLen1, 1 : dataLen1);
% Syy = covariance(dataLen1 + 1 : size(covariance, 2), dataLen1 + 1 : size(covariance, 2)) ...
% + eye(dataLen2) * 10^(-7);
Syy = covariance(dataLen1 + 1 : size(covariance, 2), dataLen1 + 1 : size(covariance, 2));
Sxy = covariance(1 : dataLen1, dataLen1 + 1 : size(covariance, 2));
% Syx = Sxy';
% using SVD to compute the projection
Hx = (Sxx)^(-1/2);
Hy = (Syy)^(-1/2);
H = Hx * Sxy * Hy;
[U, D, V] = svd(H, 'econ');
ccaEigvector1 = Hx * U;
ccaEigvector2 = Hy * V;
% make the canonical correlation variable has unit variance
ccaEigvector1 = ccaEigvector1 * diag(diag((eye(size(ccaEigvector1, 2)) ./ sqrt(ccaEigvector1' * Sxx * ccaEigvector1))));
ccaEigvector2 = ccaEigvector2 * diag(diag((eye(size(ccaEigvector2, 2)) ./ sqrt(ccaEigvector2' * Syy * ccaEigvector2))));
end



相关文章
|
29天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
571 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
1月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
107 7
|
29天前
|
数据可视化 数据安全/隐私保护 C++
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
5月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
316 3
|
5月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
271 3
|
2月前
|
数据可视化 数据挖掘 BI
MATLAB学习之旅:数据统计与分析
在MATLAB中,我们掌握了数据导入、处理及插值拟合等基础技能。接下来,我们将深入数据统计与分析领域,学习描述性统计量(如均值、标准差)、数据分布分析(如直方图、正态概率图)、数据排序与排名、数据匹配查找以及数据可视化(如箱线图、散点图)。这些工具帮助我们挖掘数据中的有价值信息,揭示数据的奥秘,为后续数据分析打下坚实基础。
|
3月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
105 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
4月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
333 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
3月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
下一篇
oss创建bucket