自组织神经网络(SOM)的Python第三方库minisom聚类功能实现

简介: 自组织神经网络(SOM)的Python第三方库minisom聚类功能实现

聚类功能

在这个例子中,我们将看到如何使用 MiniSom 对 iris 数据集进行聚类。

首先,让我们加载数据并训练我们的 SOM:

from minisom import MiniSom
import numpy as np
import pandas as pd
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', 
                    names=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',
                   'asymmetry_coefficient', 'length_kernel_groove', 'target'], usecols=[0, 5], 
                   sep='\t+', engine='python')
# data normalization
data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)
data = data.values
# Initialization and training
som_shape = (1, 3)
som = MiniSom(som_shape[0], som_shape[1], data.shape[1], sigma=.5, learning_rate=.5,
              neighborhood_function='gaussian', random_seed=10)
som.train_batch(data, 500, verbose=True)

[ 500 / 500 ] 100% - 0:00:00 左

量化误差:0.864828807271489

现在我们将映射到特定神经元的所有样本视为一个簇。为了更容易地识别每个簇,我们将 SOM 上神经元的二维索引转换为单维索引:

# each neuron represents a cluster
winner_coordinates = np.array([som.winner(x) for x in data]).T
# with np.ravel_multi_index we convert the bidimensional
# coordinates to a monodimensional index
cluster_index = np.ravel_multi_index(winner_coordinates, som_shape)

我们可以用不同的颜色绘制每个集群:

import matplotlib.pyplot as plt
%matplotlib inline
# plotting the clusters using the first 2 dimentions of the data
for c in np.unique(cluster_index):
    plt.scatter(data[cluster_index == c, 0],
                data[cluster_index == c, 1], label='cluster='+str(c), alpha=.7)
# plotting centroids
for centroid in som.get_weights():
    plt.scatter(centroid[:, 0], centroid[:, 1], marker='x', 
                s=80, linewidths=35, color='k', label='centroid')
plt.legend();

image.png


相关文章
|
8天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
23 3
|
6天前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
|
6天前
|
网络协议 网络安全 Apache
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架
|
1月前
|
网络协议 网络安全 网络架构
|
1月前
|
机器学习/深度学习 算法
神经网络的结构与功能
神经网络是一种广泛应用于机器学习和深度学习的模型,旨在模拟人类大脑的信息处理方式。它们由多层不同类型的节点或“神经元”组成,每层都有特定的功能和责任。
31 0
|
2月前
|
5G 网络安全 SDN
网络功能虚拟化(NFV)和软件定义网络(SDN):赋能5G网络灵活、智能演进的关键
网络功能虚拟化(NFV)和软件定义网络(SDN):赋能5G网络灵活、智能演进的关键
73 3
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
48 10
|
1月前
|
JSON API 开发者
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
16 0
|
2月前
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
2月前
|
网络协议 C语言
C语言 网络编程(十四)并发的TCP服务端-以线程完成功能
这段代码实现了一个基于TCP协议的多线程服务器和客户端程序,服务器端通过为每个客户端创建独立的线程来处理并发请求,解决了粘包问题并支持不定长数据传输。服务器监听在IP地址`172.17.140.183`的`8080`端口上,接收客户端发来的数据,并将接收到的消息添加“-回传”后返回给客户端。客户端则可以循环输入并发送数据,同时接收服务器回传的信息。当输入“exit”时,客户端会结束与服务器的通信并关闭连接。