精通Python网络爬虫:核心技术、框架与项目实战.3.4 网页分析算法

简介:

3.4 网页分析算法


在搜索引擎中,爬虫爬取了对应的网页之后,会将网页存储到服务器的原始数据库中,之后,搜索引擎会对这些网页进行分析并确定各网页的重要性,即会影响用户检索的排名结果。

所以在此,我们需要对搜索引擎的网页分析算法进行简单了解。

搜索引擎的网页分析算法主要分为3类:基于用户行为的网页分析算法、基于网络拓扑的网页分析算法、基于网页内容的网页分析算法。接下来我们分别对这些算法进行讲解。

1.?基于用户行为的网页分析算法

基于用户行为的网页分析算法是比较好理解的。这种算法中,会依据用户对这些网页的访问行为,对这些网页进行评价,比如,依据用户对该网页的访问频率、用户对网页的访问时长、用户的单击率等信息对网页进行综合评价。

2.?基于网络拓扑的网页分析算法

基于网络拓扑的网页分析算法是依靠网页的链接关系、结构关系、已知网页或数据等对网页进行分析的一种算法,所谓拓扑,简单来说即结构关系的意思。基于网络拓扑的网页分析算法,同样主要可以细分为3种类型:基于网页粒度的分析算法、基于网页块粒度的分析算法、基于网站粒度的分析算法。

PageRank算法是一种比较典型的基于网页粒度的分析算法。相信很多朋友都听过Page-Rank算法,它是谷歌搜索引擎的核心算法,简单来说,它会根据网页之间的链接关系对网页的权重进行计算,并可以依靠这些计算出来的权重,对网页进行排名。当然,具体的算法细节有很多,在此不展开讲解。除了PageRank算法之外,HITS算法也是一种常见的基于网页粒度的分析算法。

基于网页块粒度的分析算法,也是依靠网页间链接关系进行计算的,但计算规则有所不同。我们知道,在一个网页中通常会包含多个超链接,但一般其指向的外部链接中并不是所有的链接都与网站主题相关,或者说,这些外部链接对该网页的重要程度是不一样的,所以若要基于网页块粒度进行分析,则需要对一个网页中的这些外部链接划分层次,不同层次的外部链接对于该网页来说,其重要程度不同。这种算法的分析效率和准确率,会比传统的算法好一些。

基于网站粒度的分析算法,也与PageRank算法类似,但是,如果采用基于网站粒度进行分析,相应的,会使用SiteRank算法。即此时我们会划分站点的层次和等级,而不再具体地计算站点下的各个网页的等级。所以其相对于基于网页粒度的算法来说,则更加简单高效,但是会带来一些缺点,比如精确度不如基于网页粒度的分析算法精确。

3.?基于网页内容的网页分析算法

在基于网页内容的网页分析算法中,会依据网页的数据、文本等网页内容特征,对网页进行相应的评价。

以上,我简单为大家介绍了搜索引擎中的网页分析算法,我们学习爬虫,需要对这些算法进行相应的了解。

相关文章
|
12天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
35 2
|
3天前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
14 2
|
8天前
|
数据采集 前端开发 JavaScript
除了网页标题,还能用爬虫抓取哪些信息?
爬虫技术可以抓取网页上的各种信息,包括文本、图片、视频、链接、结构化数据、用户信息、价格和库存、导航菜单、CSS和JavaScript、元数据、社交媒体信息、地图和位置信息、广告信息、日历和事件信息、评论和评分、API数据等。通过Python和BeautifulSoup等工具,可以轻松实现数据抓取。但在使用爬虫时,需遵守相关法律法规,尊重网站的版权和隐私政策,合理控制请求频率,确保数据的合法性和有效性。
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
46 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
38 3
|
13天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
30 2
|
4天前
|
安全 API 数据库
Python哪个框架合适开发淘宝商品详情api?
在数字化商业时代,开发淘宝商品详情API成为企业拓展业务的重要手段。Python凭借其强大的框架支持,如Flask、Django、Tornado和FastAPI,为API开发提供了多样化的选择。本文探讨了这些框架的特点、优势及应用场景,帮助开发者根据项目需求选择最合适的工具,确保API的高效、稳定与可扩展性。
15 0
|
12天前
|
安全 API 网络架构
Python中哪个框架最适合做API?
本文介绍了Python生态系统中几个流行的API框架,包括Flask、FastAPI、Django Rest Framework(DRF)、Falcon和Tornado。每个框架都有其独特的优势和适用场景。Flask轻量灵活,适合小型项目;FastAPI高性能且自动生成文档,适合需要高吞吐量的API;DRF功能强大,适合复杂应用;Falcon高性能低延迟,适合快速API开发;Tornado异步非阻塞,适合高并发场景。文章通过示例代码和优缺点分析,帮助开发者根据项目需求选择合适的框架。
39 0
下一篇
无影云桌面