Machine Learning | 机器学习简介
Machine Learning | (1) Scikit-learn与特征工程
Machine Learning | (2) sklearn数据集与机器学习组成
Machine Learning | (3) Scikit-learn的分类器算法-k-近邻
Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归
Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯
Machine Learning | (6) Scikit-learn的分类器算法-性能评估
Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)
Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)
Machine Learning | (9) 回归算法-线性回归
回归算法之线性回归
线性回归的定义是:目标值预期是输入变量的线性组合。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
优点:结果易于理解,计算不复杂
缺点:对非线性的数据拟合不好
适用数据类型:数值型和标称型
对于单变量线性回归,例如:前面房价例子中房子的大小预测房子的价格。f(x) = w1*x+w0,这样通过主要参数w1就可以得出预测的值。
通用公式为:
h(θ)=θ0+θ1x
那么对于多变量回归,例如:瓜的好坏程度 f(x) = w0+0.2色泽+0.5根蒂+0.3*敲声,得出的值来判断一个瓜的好与不好的程度。
通用公式为:
h(θ)=θ0+θ1x1+θ2x2
线性模型中的向量W值,客观的表达了各属性在预测中的重要性,因此线性模型有很好的解释性。对于这种“多特征预测”也就是(多元线性回归),那么线性回归就是在这个基础上得到这些W的值,然后以这些值来建立模型,预测测试数据。简单的来说就是学得一个线性模型以尽可能准确的预测实值输出标记。
那么如果对于多变量线性回归来说我们可以通过向量的方式来表示W值与特征X值之间的关系:
两向量相乘,结果为一个整数是估计值,其中所有特征集合的第一个特征值x_0x0=1,那么我们可以通过通用的向量公式来表示线性模型:
h(\theta) = \theta^T * xh(θ)=θT∗x
一个列向量的转置与特征的乘积,得出我们预测的结果,但是显然我们这个模型得到的结果可定会有误差,如下图所示:
单变量
多变量
损失函数
损失函数是一个贯穿整个机器学习重要的一个概念,大部分机器学习算法都会有误差,我们得通过显性的公式来描述这个误差,并且将这个误差优化到最小值。
对于线性回归模型,将模型与数据点之间的距离差之和做为衡量匹配好坏的标准,误差越小,匹配程度越大。我们要找的模型就是需要将f(x)和我们的真实值之间最相似的状态。于是我们就有了误差公式,模型与数据差的平方和最小:
上面公式定义了所有的误差和,那么现在需要使这个值最小?那么有两种方法,一种使用梯度下降算法,另一种使正规方程解法(只适用于简单的线性回归)。
梯度下降算法
LinearRegression
sklearn.linear_model.LinearRegression
class LinearRegression(fit_intercept = True,normalize = False,copy_X = True,n_jobs = 1) """ :param normalize:如果设置为True时,数据进行标准化。请在使用normalize = False的估计器调时用fit之前使用preprocessing.StandardScaler :param copy_X:boolean,可选,默认为True,如果为True,则X将被复制 :param n_jobs:int,可选,默认1。用于计算的CPU核数 """
实例代码:
from sklearn.linear_model import LinearRegression reg = LinearRegression()
方法
fit(X,y,sample_weight = None)
使用X作为训练数据拟合模型,y作为X的类别值。X,y为数组或者矩阵
reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
predict(X)
预测提供的数据对应的结果
reg.predict([[3,3]]) array([ 3.])
属性
coef_
表示回归系数w=(w1,w2....)
reg.coef_ array([ 0.5, 0.5])
intercept_ 表示w0
加入交叉验证
前面我们已经提到了模型的交叉验证,那么我们这个自己去建立数据集,然后通过线性回归的交叉验证得到模型。由于sklearn中另外两种回归岭回归、lasso回归都本省提供了回归CV方法,比如linear_model.Lasso,交叉验证linear_model.LassoCV;linear_model.Ridge,交叉验证linear_model.RidgeCV。所以我们需要通过前面的cross_validation提供的方法进行k-折交叉验证。
from sklearn.datasets.samples_generator import make_regression from sklearn.model_selection import cross_val_score from sklearn import linear_model import matplotlib.pyplot as plt lr = linear_model.LinearRegression() X, y = make_regression(n_samples=200, n_features=5000, random_state=0) result = cross_val_score(lr, X, y) print result
案例分析
波士顿房价预测
使用scikit-learn中内置的回归模型对“美国波士顿房价”数据进行预测。对于一些比赛数据,可以从kaggle官网上获取,网址:https://www.kaggle.com/datasets
1.美国波士顿地区房价数据描述
from sklearn.datasets import load_boston boston = load_boston() print boston.DESCR
2.波士顿地区房价数据分割
from sklearn.cross_validation import train_test_split import numpy as np X = boston.data y = boston.target X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=33,test_size = 0.25)
3.训练与测试数据标准化处理
from sklearn.preprocessing import StandardScaler ss_X = StandardScaler() ss_y = StandardScaler() X_train = ss_X.fit_transform(X_train) X_test = ss_X.transform(X_test) y_train = ss_X.fit_transform(y_train) X_train = ss_X.transform(y_test)
4.使用最简单的线性回归模型LinearRegression和梯度下降估计SGDRegressor对房价
进行预测
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train,y_train) lr_y_predict = lr.predict(X_test) from sklearn.linear_model import SGDRegressor sgdr = SGDRegressor() sgdr.fit(X_train,y_train) sgdr_y_predict = sgdr.predict(X_test)
5.性能评测
对于不同的类别预测,我们不能苛刻的要求回归预测的数值结果要严格的与真实值相同。一般情况下,我们希望衡量预测值与真实值之间的差距。因此,可以测评函数进行评价。其中最为直观的评价指标均方误差(Mean Squared Error)MSE,因为这也是线性回归模型所要优化的目标。
MSE的计算方法如式:
{MSE=}\frac{1}{m}\sum_{i=1}^{m}\left({y^{i}-\bar{y}}\right)^{2}MSE=m1∑i=1m(yi−y¯)2
使用MSE评价机制对两种模型的回归性能作出评价
from sklearn.metrics import mean_squared_error print '线性回归模型的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_tranform(lr_y_predict)) print '梯度下降模型的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_tranform(sgdr_y_predict))
通过这一比较发现,使用梯度下降估计参数的方法在性能表现上不及使用解析方法的LinearRegression,但是如果面对训练数据规模十分庞大的任务,随即梯度法不论是在分类还是回归问题上都表现的十分高效,可以在不损失过多性能的前提下,节省大量计算时间。根据Scikit-learn光网的建议,如果数据规模超过10万,推荐使用随机梯度法估计参数模型。
注意:线性回归器是最为简单、易用的回归模型。正式因为其对特征与回归目标之间的线性假设,从某种程度上说也局限了其应用范围。特别是,现实生活中的许多实例数据的各种特征与回归目标之间,绝大多数不能保证严格的线性关系。尽管如此,在不清楚特征之间关系的前提下,我们仍然可以使用线性回归模型作为大多数数据分析的基线系统。
完整代码如下:
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.metrics import mean_squared_error,classification_report from sklearn.cluster import KMeans def linearmodel(): """ 线性回归对波士顿数据集处理 :return: None """ # 1、加载数据集 ld = load_boston() x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25) # 2、标准化处理 # 特征值处理 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 目标值进行处理 std_y = StandardScaler() y_train = std_y.fit_transform(y_train) y_test = std_y.transform(y_test) # 3、估计器流程 # LinearRegression lr = LinearRegression() lr.fit(x_train,y_train) # print(lr.coef_) y_lr_predict = lr.predict(x_test) y_lr_predict = std_y.inverse_transform(y_lr_predict) print("Lr预测值:",y_lr_predict) # SGDRegressor sgd = SGDRegressor() sgd.fit(x_train,y_train) # print(sgd.coef_) y_sgd_predict = sgd.predict(x_test) y_sgd_predict = std_y.inverse_transform(y_sgd_predict) print("SGD预测值:",y_sgd_predict) # 带有正则化的岭回归 rd = Ridge(alpha=0.01) rd.fit(x_train,y_train) y_rd_predict = rd.predict(x_test) y_rd_predict = std_y.inverse_transform(y_rd_predict) print(rd.coef_) # 两种模型评估结果 print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict)) print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict)) print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict)) return None