如何下载pytorch的历史版本?

简介: 如何下载pytorch的历史版本?

网页地址https://pytorch.org/get-started/previous-versions/


INSTALLING PREVIOUS VERSIONS OF PYTORCH

We’d prefer you install the latest version, but old binaries and installation instructions are provided below for your convenience.


COMMANDS FOR VERSIONS >= 1.0.0

v1.6.0

Conda


OSX


# conda

conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch

Linux and Windows

# CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 -c pytorch
# CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
# CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
# CPU Only
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.6.0 torchvision==0.7.0

Linux and Windows


# CUDA 10.2

pip install torch==1.6.0 torchvision==0.7.0

# CUDA 10.1

pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2

pip install torch==1.6.0+cu92 torchvision==0.7.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only

pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

v1.5.1

Conda


OSX


# conda

conda install pytorch==1.5.1 torchvision==0.6.1 -c pytorch

Linux and Windows


# CUDA 9.2

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 -c pytorch

# CUDA 10.1

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 -c pytorch

# CUDA 10.2

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch

# CPU Only

conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.5.1 torchvision==0.6.1

Linux and Windows


# CUDA 10.2

pip install torch==1.5.1 torchvision==0.6.1

# CUDA 10.1

pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2

pip install torch==1.5.1+cu92 torchvision==0.6.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only

pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f https://download.pytorch.org/whl/torch_stable.html

v1.5.0

Conda


OSX


# conda

conda install pytorch==1.5.0 torchvision==0.6.0 -c pytorch

Linux and Windows


# CUDA 9.2

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 -c pytorch

# CUDA 10.1

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch

# CUDA 10.2

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 -c pytorch

# CPU Only

conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.5.0 torchvision==0.6.0

Linux and Windows


# CUDA 10.2

pip install torch==1.5.0 torchvision==0.6.0

# CUDA 10.1

pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2

pip install torch==1.5.0+cu92 torchvision==0.6.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only

pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

v1.4.0

Conda


OSX


# conda

conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch

Linux and Windows


# CUDA 9.2

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch

# CUDA 10.1

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

# CPU Only

conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.4.0 torchvision==0.5.0

Linux and Windows


# CUDA 10.1

pip install torch==1.4.0 torchvision==0.5.0

# CUDA 9.2

pip install torch==1.4.0+cu92 torchvision==0.5.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only

pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

v1.2.0

Conda


OSX


# conda

conda install pytorch==1.2.0 torchvision==0.4.0 -c pytorch

Linux and Windows


# CUDA 9.2

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch

# CUDA 10.0

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

# CPU Only

conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.2.0 torchvision==0.4.0

Linux and Windows


# CUDA 10.0

pip install torch==1.2.0 torchvision==0.4.0

# CUDA 9.2

pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only

pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

v1.1.0

Conda


OSX


# conda

conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch

Linux and Windows


# CUDA 9.0

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

# CUDA 10.0

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch

# CPU Only

conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.1.0 torchvision==0.3.0

Linux and Windows


# CUDA 10.0

Download and install wheel from https://download.pytorch.org/whl/cu100/torch_stable.html

# CUDA 9.0

Download and install wheel from https://download.pytorch.org/whl/cu90/torch_stable.html

# CPU only

Download and install wheel from https://download.pytorch.org/whl/cpu/torch_stable.html

v1.0.1

Conda


OSX


# conda

conda install pytorch==1.0.1 torchvision==0.2.2 -c pytorch

Linux and Windows


# CUDA 9.0

conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch

# CUDA 10.0

conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 -c pytorch

# CPU Only

conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.0.1 torchvision==0.2.2

Linux and Windows


# CUDA 10.0

Download and install wheel from https://download.pytorch.org/whl/cu100/torch_stable.html

# CUDA 9.0

Download and install wheel from https://download.pytorch.org/whl/cu90/torch_stable.html

# CPU only

Download and install wheel from https://download.pytorch.org/whl/cpu/torch_stable.html

v1.0.0

Conda

OSX


# conda

conda install pytorch==1.0.0 torchvision==0.2.1 -c pytorch

Linux and Windows


# CUDA 10.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch

# CUDA 9.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 -c pytorch

# CUDA 8.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch

# CPU Only

conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly -c pytorch

Wheel


OSX


pip install torch==1.0.0 torchvision==0.2.1

Linux and Windows


# CUDA 10.0

Download and install wheel from https://download.pytorch.org/whl/cu100/torch_stable.html

# CUDA 9.0

Download and install wheel from https://download.pytorch.org/whl/cu90/torch_stable.html

# CUDA 8.0

Download and install wheel from https://download.pytorch.org/whl/cu80/torch_stable.html

# CPU only

Download and install wheel from https://download.pytorch.org/whl/cpu/torch_stable.html

COMMANDS FOR VERSIONS < 1.0.0

Via conda

This should be used for most previous macOS version installs.


To install a previous version of PyTorch via Anaconda or Miniconda, replace “0.4.1” in the following commands with the desired version (i.e., “0.2.0”).


Installing with CUDA 9


conda install pytorch=0.4.1 cuda90 -c pytorch


or


conda install pytorch=0.4.1 cuda92 -c pytorch


Installing with CUDA 8


conda install pytorch=0.4.1 cuda80 -c pytorch


Installing with CUDA 7.5


conda install pytorch=0.4.1 cuda75 -c pytorch


Installing without CUDA


conda install pytorch=0.4.1 -c pytorch


From source

It is possible to checkout an older version of PyTorch and build it. You can list tags in PyTorch git repository with git tag and checkout a particular one (replace ‘0.1.9’ with the desired version) with


git checkout v0.1.9


Follow the install from source instructions in the README.md of the PyTorch checkout.


Via pip

Download the whl file with the desired version from the following html pages:


https://download.pytorch.org/whl/cpu/torch_stable.html # CPU-only build

https://download.pytorch.org/whl/cu80/torch_stable.html # CUDA 8.0 build

https://download.pytorch.org/whl/cu90/torch_stable.html # CUDA 9.0 build

https://download.pytorch.org/whl/cu92/torch_stable.html # CUDA 9.2 build

https://download.pytorch.org/whl/cu100/torch_stable.html # CUDA 10.0 build

Then, install the file with pip install [downloaded file]


Note: most pytorch versions are available only for specific CUDA versions. For example pytorch=1.0.1 is not available for CUDA 9.2


(Old) PyTorch Linux binaries compiled with CUDA 7.5

These predate the html page above and have to be manually installed by downloading the wheel file and pip install downloaded_file


cu75/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl

cu75/torch-0.3.0.post4-cp27-cp27m-linux_x86_64.whl

cu75/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post3-cp35-cp35m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl

cu75/torch-0.2.0.post3-cp27-cp27m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post2-cp36-cp36m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post2-cp35-cp35m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post2-cp27-cp27mu-manylinux1_x86_64.whl

cu75/torch-0.2.0.post2-cp27-cp27m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post1-cp36-cp36m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post1-cp35-cp35m-manylinux1_x86_64.whl

cu75/torch-0.2.0.post1-cp27-cp27mu-manylinux1_x86_64.whl

cu75/torch-0.2.0.post1-cp27-cp27m-manylinux1_x86_64.whl

cu75/torch-0.1.12.post2-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.12.post2-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.12.post2-cp27-none-linux_x86_64.whl

cu75/torch-0.1.12.post1-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.12.post1-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.12.post1-cp27-none-linux_x86_64.whl

cu75/torch-0.1.11.post5-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.11.post5-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.11.post5-cp27-none-linux_x86_64.whl

cu75/torch-0.1.11.post4-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.11.post4-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.11.post4-cp27-none-linux_x86_64.whl

cu75/torch-0.1.10.post2-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.10.post2-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.10.post2-cp27-none-linux_x86_64.whl

cu75/torch-0.1.10.post1-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.10.post1-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.10.post1-cp27-none-linux_x86_64.whl

cu75/torch-0.1.9.post2-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.9.post2-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.9.post2-cp27-none-linux_x86_64.whl

cu75/torch-0.1.9.post1-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.9.post1-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.9.post1-cp27-none-linux_x86_64.whl

cu75/torch-0.1.8.post1-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.8.post1-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.8.post1-cp27-none-linux_x86_64.whl

cu75/torch-0.1.7.post2-cp36-cp36m-linux_x86_64.whl

cu75/torch-0.1.7.post2-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.7.post2-cp27-none-linux_x86_64.whl

cu75/torch-0.1.6.post22-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.6.post22-cp27-none-linux_x86_64.whl

cu75/torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl

cu75/torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl

Windows binaries

cpu/torch-1.0.0-cp35-cp35m-win_amd64.whl

cu80/torch-1.0.0-cp35-cp35m-win_amd64.whl

cu90/torch-1.0.0-cp35-cp35m-win_amd64.whl

cu100/torch-1.0.0-cp35-cp35m-win_amd64.whl

cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl

cu80/torch-1.0.0-cp36-cp36m-win_amd64.whl

cu90/torch-1.0.0-cp36-cp36m-win_amd64.whl

cu100/torch-1.0.0-cp36-cp36m-win_amd64.whl

cpu/torch-1.0.0-cp37-cp37m-win_amd64.whl

cu80/torch-1.0.0-cp37-cp37m-win_amd64.whl

cu90/torch-1.0.0-cp37-cp37m-win_amd64.whl

cu100/torch-1.0.0-cp37-cp37m-win_amd64.whl

cpu/torch-0.4.1-cp35-cp35m-win_amd64.whl

cu80/torch-0.4.1-cp35-cp35m-win_amd64.whl

cu90/torch-0.4.1-cp35-cp35m-win_amd64.whl

cu92/torch-0.4.1-cp35-cp35m-win_amd64.whl

cpu/torch-0.4.1-cp36-cp36m-win_amd64.whl

cu80/torch-0.4.1-cp36-cp36m-win_amd64.whl

cu90/torch-0.4.1-cp36-cp36m-win_amd64.whl

cu92/torch-0.4.1-cp36-cp36m-win_amd64.whl

cpu/torch-0.4.1-cp37-cp37m-win_amd64.whl

cu80/torch-0.4.1-cp37-cp37m-win_amd64.whl

cu90/torch-0.4.1-cp37-cp37m-win_amd64.whl

cu92/torch-0.4.1-cp37-cp37m-win_amd64.whl

Mac and misc. binaries

For recent macOS binaries, use conda:


e.g.,


conda install pytorch=0.4.1 cuda90 -c pytorch conda install pytorch=0.4.1 cuda92 -c pytorch conda install pytorch=0.4.1 cuda80 -c pytorch conda install pytorch=0.4.1 -c pytorch # No CUDA


torchvision-0.1.6-py3-none-any.whl

torchvision-0.1.6-py2-none-any.whl

torch-1.0.0-cp37-none-macosx_10_7_x86_64.whl

torch-1.0.0-cp36-none-macosx_10_7_x86_64.whl

torch-1.0.0-cp35-none-macosx_10_6_x86_64.whl

torch-1.0.0-cp27-none-macosx_10_6_x86_64.whl

torch-0.4.0-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.4.0-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.4.0-cp27-none-macosx_10_7_x86_64.whl

torch-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.3.1-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.3.1-cp27-none-macosx_10_7_x86_64.whl

torch-0.3.0.post4-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.3.0.post4-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.3.0.post4-cp27-none-macosx_10_7_x86_64.whl

torch-0.2.0.post3-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.2.0.post3-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.2.0.post3-cp27-none-macosx_10_7_x86_64.whl

torch-0.2.0.post2-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.2.0.post2-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.2.0.post2-cp27-none-macosx_10_7_x86_64.whl

torch-0.2.0.post1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.2.0.post1-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.2.0.post1-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.12.post2-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.12.post2-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.1.12.post2-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.12.post1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.12.post1-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.1.12.post1-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.11.post5-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.11.post5-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.1.11.post5-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.11.post4-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.11.post4-cp35-cp35m-macosx_10_7_x86_64.whl

torch-0.1.11.post4-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.10.post1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.10.post1-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.10.post1-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.9.post2-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.9.post2-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.9.post2-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.9.post1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.9.post1-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.9.post1-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.8.post1-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.8.post1-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.8.post1-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.7.post2-cp36-cp36m-macosx_10_7_x86_64.whl

torch-0.1.7.post2-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.7.post2-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.6.post22-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1.6.post22-cp27-none-macosx_10_7_x86_64.whl

torch-0.1.6.post20-cp35-cp35m-linux_x86_64.whl

torch-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl

torch-0.1.6.post17-cp35-cp35m-linux_x86_64.whl

torch-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl

torch-0.1-cp35-cp35m-macosx_10_6_x86_64.whl

torch-0.1-cp27-cp27m-macosx_10_6_x86_64.whl

torch_cuda80-0.1.6.post20-cp35-cp35m-linux_x86_64.whl

torch_cuda80-0.1.6.post20-cp27-cp27mu-linux_x86_64.whl

torch_cuda80-0.1.6.post17-cp35-cp35m-linux_x86_64.whl

torch_cuda80-0.1.6.post17-cp27-cp27mu-linux_x86_64.whl


目录
相关文章
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
百度搜索:蓝易云【Pytorch和CUDA版本对应关系】
请注意,上述版本对应关系只是示例,并非详尽无遗。实际上,PyTorch的每个版本通常会支持多个CUDA版本,而具体支持的CUDA版本也可能因操作系统、硬件配置等因素而有所不同。因此,在使用PyTorch时,建议参考PyTorch官方文档或社区支持的信息,以获取最准确和最新的PyTorch与CUDA版本对应关系。
164 2
|
并行计算 PyTorch Linux
幸福的烦恼:显卡算力太高而pytorch版本太低不支持
幸福的烦恼:显卡算力太高而pytorch版本太低不支持
1089 0
|
28天前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
217 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
28天前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
317 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
并行计算 Ubuntu 算法
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
90 0
|
1月前
|
并行计算 开发工具 异构计算
在Windows平台使用源码编译和安装PyTorch3D指定版本
【10月更文挑战第6天】在 Windows 平台上,编译和安装指定版本的 PyTorch3D 需要先安装 Python、Visual Studio Build Tools 和 CUDA(如有需要),然后通过 Git 获取源码。建议创建虚拟环境以隔离依赖,并使用 `pip` 安装所需库。最后,在源码目录下运行 `python setup.py install` 进行编译和安装。完成后即可在 Python 中导入 PyTorch3D 使用。
146 0
|
6月前
|
PyTorch 算法框架/工具
在conda中如何查看安装的pytorch版本 - 蓝易云
这个命令会列出所有与pytorch相关的包,包括它们的版本号。你可以在列表中找到pytorch的版本号。
692 1
|
PyTorch 算法框架/工具 计算机视觉
目标检测模型NanoDet(超轻量,速度很快)介绍和PyTorch版本实践
YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。
344 0
|
机器学习/深度学习 并行计算 PyTorch
深度学习|如何确定 CUDA+PyTorch 版本
深度学习|如何确定 CUDA+PyTorch 版本
2164 0
|
并行计算 PyTorch Linux
pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装
pytorch安装GPU版本 (Cuda12.1)教程: Windows、Mac和Linux系统下GPU版PyTorch(CUDA 12.1)快速安装
6504 0
下一篇
无影云桌面