AttributeError: module ‘distutils‘ has no attribute ‘version‘解决跑pytorch代码报错

简介: AttributeError: module ‘distutils‘ has no attribute ‘version‘解决跑pytorch代码报错

跑pytorch代码报错AttributeError: module ‘distutils’ has no attribute ‘version’



Traceback (most recent call last):
File “D:/pycharm_envir/gaozhiyuan/Segmentation/pytorch_segmentation/deeplabv3-plus-pytorch-main/train.py”, line 16, in
from utils.callbacks import LossHistory, EvalCallback
File “D:\pycharm_envir\gaozhiyuan\Segmentation\pytorch_segmentation\deeplabv3-plus-pytorch-main\utils\callbacks.py”, line 17, in
from torch.utils.tensorboard import SummaryWriter
File “C:\software\anaconda3\envs\pytorch_gao\lib\site-packages\torch\utils\tensorboard_init_.py”, line 4, in
LooseVersion = distutils.version.LooseVersion
AttributeError: module ‘distutils’ has no attribute ‘version’


网上大多数方法是说使用pip uninstall setuptools卸载最新的setuptools,然后安装较老版本的


但是这个方法,亲测不太好用


这里建议直接使用pycharm修改源代码


第一步,进入这个代码里边

第二步,分别注释这几行代码



LooseVersion = distutils.version.LooseVersion

if not hasattr(tensorboard, ‘version’) or LooseVersion(tensorboard.version) < LooseVersion(‘1.15’):

raise ImportError(‘TensorBoard logging requires TensorBoard version 1.15 or above’)

del LooseVersion

e48e6a7c5d7a4efabf8a5189f281710b.png


注释完就可以正常运行了

相关文章
|
11月前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
1880 1
|
11月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
1143 4
|
29天前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
104 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
5月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
387 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
16天前
|
机器学习/深度学习 数据可视化 机器人
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
扩散模型和流匹配是生成高分辨率数据(如图像和机器人轨迹)的先进技术。扩散模型通过逐步去噪生成数据,其代表应用Stable Diffusion已扩展至机器人学领域形成“扩散策略”。流匹配作为更通用的方法,通过学习时间依赖的速度场将噪声转化为目标分布,适用于图像生成和机器人轨迹生成,且通常以较少资源实现更快生成。 本文深入解析流匹配在图像生成中的应用,核心思想是将图像视为随机变量的实现,并通过速度场将源分布转换为目标分布。文中提供了一维模型训练实例,展示了如何用神经网络学习速度场,以及使用最大均值差异(MMD)改进训练效果。与扩散模型相比,流匹配结构简单,资源需求低,适合多模态分布生成。
70 13
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
|
17天前
|
机器学习/深度学习 编解码 PyTorch
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
本文介绍了一种基于扩散模型的文本到视频生成系统,详细展示了模型架构、训练流程及生成效果。通过3D U-Net结构和多头注意力机制,模型能够根据文本提示生成高质量视频。
63 1
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
|
2月前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
807 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
284 10
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】

热门文章

最新文章

下一篇
oss创建bucket