DL之MobileNet:MobileNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略(一)

简介: DL之MobileNet:MobileNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

MobileNet算法的简介(论文介绍)


     深度学习在图像分类,目标检测和图像分割等任务表现出了巨大的优越性。但是伴随着模型精度的提升是计算量,存储空间以及能耗方面的巨大开销,对于嵌入式应用,比如移动或车载应用都是难以接受的。



Abstract  

     We present a class of efficient models called MobileNets  for mobile and embedded vision applications. MobileNets  are based on a streamlined architecture that uses depthwise  separable convolutions to build light weight deep  neural networks. We introduce two simple global hyperparameters  that efficiently trade off between latency and  accuracy. These hyper-parameters allow the model builder  to choose the right sized model for their application based  on the constraints of the problem. We present extensive  experiments on resource and accuracy tradeoffs and show  strong performance compared to other popular models on  ImageNet classification. We then demonstrate the effectiveness  of MobileNets across a wide range of applications and  use cases including object detection, finegrain classification,  face attributes and large scale geo-localization.

摘要

     我们为移动和嵌入式视觉应用提供了一类称为MobileNets的高效模型。Mobilenets基于一种流线型的架构,它使用纵向的可分离卷积来构建轻量级的深层神经网络。我们引入了两个简单的全局超参数,有效地在延迟和精度之间进行权衡。这些超参数允许模型生成器根据问题的约束为其应用程序选择合适大小的模型。我们在资源和精度权衡方面进行了广泛的实验,并在图像网分类方面与其他流行的模型相比表现出很强的性能。然后,我们展示了MobileNet在广泛应用和使用案例中的有效性,包括目标检测、细粒度分类、人脸属性和大规模地理定位。

Conclusion

     We proposed a new model architecture called MobileNets  based on depthwise separable convolutions. We  investigated some of the important design decisions leading  to an efficient model. We then demonstrated how to build  smaller and faster MobileNets using width multiplier and  resolution multiplier by trading off a reasonable amount of  accuracy to reduce size and latency. We then compared different  MobileNets to popular models demonstrating superior  size, speed and accuracy characteristics. We concluded  by demonstrating MobileNet’s effectiveness when applied  to a wide variety of tasks. As a next step to help adoption  and exploration of MobileNets, we plan on releasing models  in TensorFlow.

结论

     我们提出了一种新的模型体系结构,称为基于非纵向可分离卷积的MobileNets 。我们研究了导致有效模型的一些重要设计决策。然后,我们演示了如何利用宽度倍增器和分辨率倍增器来构建更小更快的移动网络,通过牺牲合理的精度来减少大小和延迟。然后,我们将不同的MobileNets 与流行的模型进行了比较,显示出优越的尺寸、速度和精度特性。最后,我们展示了Mobilenet在广泛应用于各种任务时的有效性。作为帮助采用和探索MobileNets的下一步,我们计划在TensorFlow中发布模型。


论文

Andrew G. Howard, MenglongZhu, Bo Chen, Dmitry Kalenichenko, et al.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.

https://arxiv.org/abs/1704.04861




1、研究背景


       深度学习在图像分类,目标检测和图像分割等任务表现出了巨大的优越性。但是伴随着模型精度的提升是计算量,存储空间以及能耗方面的巨大开销,对于移动或车载应用都是难以接受的。



2、传统的模型轻量化常用的方法


(1)、卷积核分解,使用1×N和N×1的卷积核代替N×N的卷积核

(2)、使用bottleneck结构,以SqueezeNet为代表

(3)、进行深度压缩,以低精度浮点数保存,例如Deep Compression,比如将32bit降维到8bit,进行保存!

(4)、冗余卷积核剪枝及哈弗曼编码



3、MobileNet 模型可应用于各种识别任务,以实现高效的设备智能


    可以应用在各种嵌入式设备上。MobileNet models can be applied to various recognition tasks for efficient on device intelligence


image.png


MobileNet使用了一种称之为深度可分离卷积,来替代原有的传统3D卷积,减少了卷积核的冗余表达。

计算量和参数数量明显下降,卷积网络可以应用在更多的移动端平台。

深度可分离卷积的相关文章

DL之Xception:Xception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

https://yunyaniu.blog.csdn.net/article/details/97934175




相关文章
|
2月前
|
人工智能 自然语言处理 算法
首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效
【8月更文挑战第26天】在人工智能领域,尽管大型语言模型(LLMs)作为自动评估工具展现了巨大潜力,但在自然语言生成质量评估中仍存偏见问题,且难以确保一致性。为解决这一挑战,研究者开发了Pairwise-preference Search(PairS)算法,一种基于不确定性的搜索方法,通过成对比较及不确定性引导实现高效文本排名,有效减少了偏见、提升了评估效率和可解释性。PairS在多项任务中表现出色,相较于传统评分法有显著提升,为自然语言处理评估提供了新思路。更多详情参阅论文:https://arxiv.org/abs/2403.16950。
42 4
|
18天前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
29 1
|
3天前
|
存储 算法 安全
ArrayList简介及使用全方位手把手教学(带源码),用ArrayList实现洗牌算法,3个人轮流拿牌(带全部源码)
文章全面介绍了Java中ArrayList的使用方法,包括其构造方法、常见操作、遍历方式、扩容机制,并展示了如何使用ArrayList实现洗牌算法的实例。
7 0
|
2月前
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
本文介绍了一种名为"Synaptic Intelligence"(SI)的持续学习方法,通过模拟生物神经网络的智能突触机制,解决了人工神经网络在学习新任务时的灾难性遗忘问题,并保持了计算效率。
34 1
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
|
2月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
2月前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介
|
2月前
|
算法
【算法】递归、搜索与回溯——简介
【算法】递归、搜索与回溯——简介
|
2月前
|
算法 Python
【python】python基于 Q-learning 算法的迷宫游戏(源码+论文)【独一无二】
【python】python基于 Q-learning 算法的迷宫游戏(源码+论文)【独一无二】
|
17天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
17天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1