ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值

简介: ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值

输出结果


1、LiR模型


LiR:The value of default measurement of LiR is 0.8729775261968014

LiR:R-squared value of DecisionTreeRegressor: 0.8729775261968014




2、XGBoost模型


ML之XGBoost:XGBoost参数调优之经验总结——DIY十多个案例


T1、调用XGBR_GSCV_Shuffle()函数,调优+重要性可视化+特征选择模型


   XGBR_model = XGBRegressor( learning_rate=0.06, max_depth= 4, n_estimators=100 )    #XGBR_GSCV_Shuffle()函数,第一次得到最佳参数组合,输出准确度: 0.9312586298921468



   XGBR_model = XGBRegressor( learning_rate=0.15, max_depth= 4, n_estimators=100 )    #XGBR_GSCV_Shuffle()函数,第二次得到最佳参数组合,输出准确度: 0.9361222829659452




image.png


   XGBR_model = XGBRegressor( learning_rate=0.03, max_depth= 5, n_estimators=200 )    #XGBR_GSCV_Shuffle()函数,第三次得到最佳参数组合,输出准确度: 0.9335316602435876


image.png


Best: -7.044124 using {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 200}

XGBR_GSCV_Shuffle score: 2.65407690407428

-13.263615 (3.437888) with: {'learning_rate': 0.03, 'max_depth': 4, 'n_estimators': 100}

-7.085101 (5.544846) with: {'learning_rate': 0.03, 'max_depth': 4, 'n_estimators': 200}

-13.266334 (3.458229) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 100}

-7.044124 (5.800332) with: {'learning_rate': 0.03, 'max_depth': 5, 'n_estimators': 200}

-13.379665 (3.515279) with: {'learning_rate': 0.03, 'max_depth': 6, 'n_estimators': 100}

-7.185696 (5.878527) with: {'learning_rate': 0.03, 'max_depth': 6, 'n_estimators': 200}

-13.479146 (3.629065) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 100}

-7.324944 (5.854973) with: {'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 200}

-7.143094 (5.637506) with: {'learning_rate': 0.06, 'max_depth': 4, 'n_estimators': 100}

-7.593377 (6.216784) with: {'learning_rate': 0.06, 'max_depth': 4, 'n_estimators': 200}

-7.098928 (5.750214) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 100}

-7.597613 (6.403983) with: {'learning_rate': 0.06, 'max_depth': 5, 'n_estimators': 200}

-7.210929 (5.854905) with: {'learning_rate': 0.06, 'max_depth': 6, 'n_estimators': 100}

-7.759291 (6.498452) with: {'learning_rate': 0.06, 'max_depth': 6, 'n_estimators': 200}

-7.348396 (5.867050) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 100}

-7.914092 (6.526464) with: {'learning_rate': 0.06, 'max_depth': 7, 'n_estimators': 200}

-7.514619 (6.090178) with: {'learning_rate': 0.09, 'max_depth': 4, 'n_estimators': 100}

-7.792390 (6.343156) with: {'learning_rate': 0.09, 'max_depth': 4, 'n_estimators': 200}

-7.506378 (6.281410) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 100}

-7.757921 (6.477667) with: {'learning_rate': 0.09, 'max_depth': 5, 'n_estimators': 200}

-7.626987 (6.321250) with: {'learning_rate': 0.09, 'max_depth': 6, 'n_estimators': 100}

-7.830667 (6.496410) with: {'learning_rate': 0.09, 'max_depth': 6, 'n_estimators': 200}

-7.873006 (6.432751) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 100}

-8.036536 (6.584526) with: {'learning_rate': 0.09, 'max_depth': 7, 'n_estimators': 200}

-7.672704 (6.222572) with: {'learning_rate': 0.12000000000000001, 'max_depth': 4, 'n_estimators': 100}

-7.916448 (6.418164) with: {'learning_rate': 0.12000000000000001, 'max_depth': 4, 'n_estimators': 200}

-7.724868 (6.419296) with: {'learning_rate': 0.12000000000000001, 'max_depth': 5, 'n_estimators': 100}

-7.893062 (6.541605) with: {'learning_rate': 0.12000000000000001, 'max_depth': 5, 'n_estimators': 200}

-7.849538 (6.506693) with: {'learning_rate': 0.12000000000000001, 'max_depth': 6, 'n_estimators': 100}

-7.949133 (6.580036) with: {'learning_rate': 0.12000000000000001, 'max_depth': 6, 'n_estimators': 200}

-8.021275 (6.522834) with: {'learning_rate': 0.12000000000000001, 'max_depth': 7, 'n_estimators': 100}

-8.115124 (6.590436) with: {'learning_rate': 0.12000000000000001, 'max_depth': 7, 'n_estimators': 200}

-7.851446 (6.380559) with: {'learning_rate': 0.15000000000000002, 'max_depth': 4, 'n_estimators': 100}

-7.962357 (6.452926) with: {'learning_rate': 0.15000000000000002, 'max_depth': 4, 'n_estimators': 200}

-7.752629 (6.526754) with: {'learning_rate': 0.15000000000000002, 'max_depth': 5, 'n_estimators': 100}

-7.870802 (6.591447) with: {'learning_rate': 0.15000000000000002, 'max_depth': 5, 'n_estimators': 200}

-7.828501 (6.482895) with: {'learning_rate': 0.15000000000000002, 'max_depth': 6, 'n_estimators': 100}

-7.892413 (6.509397) with: {'learning_rate': 0.15000000000000002, 'max_depth': 6, 'n_estimators': 200}

-8.141324 (6.636931) with: {'learning_rate': 0.15000000000000002, 'max_depth': 7, 'n_estimators': 100}

-8.182099 (6.635204) with: {'learning_rate': 0.15000000000000002, 'max_depth': 7, 'n_estimators': 200}

-7.938719 (6.490107) with: {'learning_rate': 0.18000000000000002, 'max_depth': 4, 'n_estimators': 100}

-8.017980 (6.506082) with: {'learning_rate': 0.18000000000000002, 'max_depth': 4, 'n_estimators': 200}

-7.938695 (6.610782) with: {'learning_rate': 0.18000000000000002, 'max_depth': 5, 'n_estimators': 100}

-8.012643 (6.660132) with: {'learning_rate': 0.18000000000000002, 'max_depth': 5, 'n_estimators': 200}

-8.011816 (6.616109) with: {'learning_rate': 0.18000000000000002, 'max_depth': 6, 'n_estimators': 100}

-8.052129 (6.641090) with: {'learning_rate': 0.18000000000000002, 'max_depth': 6, 'n_estimators': 200}

-8.118405 (6.560621) with: {'learning_rate': 0.18000000000000002, 'max_depth': 7, 'n_estimators': 100}

-8.131590 (6.550569) with: {'learning_rate': 0.18000000000000002, 'max_depth': 7, 'n_estimators': 200}

-7.915589 (6.338897) with: {'learning_rate': 0.21000000000000002, 'max_depth': 4, 'n_estimators': 100}

-8.019436 (6.383854) with: {'learning_rate': 0.21000000000000002, 'max_depth': 4, 'n_estimators': 200}

-7.956674 (6.487618) with: {'learning_rate': 0.21000000000000002, 'max_depth': 5, 'n_estimators': 100}

-8.028267 (6.514906) with: {'learning_rate': 0.21000000000000002, 'max_depth': 5, 'n_estimators': 200}

-8.036983 (6.583115) with: {'learning_rate': 0.21000000000000002, 'max_depth': 6, 'n_estimators': 100}

-8.085323 (6.596389) with: {'learning_rate': 0.21000000000000002, 'max_depth': 6, 'n_estimators': 200}

-8.254193 (6.565100) with: {'learning_rate': 0.21000000000000002, 'max_depth': 7, 'n_estimators': 100}

-8.269231 (6.561241) with: {'learning_rate': 0.21000000000000002, 'max_depth': 7, 'n_estimators': 200}

-8.143765 (6.593441) with: {'learning_rate': 0.24000000000000002, 'max_depth': 4, 'n_estimators': 100}

-8.218321 (6.600359) with: {'learning_rate': 0.24000000000000002, 'max_depth': 4, 'n_estimators': 200}

-8.191637 (6.690425) with: {'learning_rate': 0.24000000000000002, 'max_depth': 5, 'n_estimators': 100}

-8.222861 (6.676068) with: {'learning_rate': 0.24000000000000002, 'max_depth': 5, 'n_estimators': 200}

-8.230726 (6.661499) with: {'learning_rate': 0.24000000000000002, 'max_depth': 6, 'n_estimators': 100}

-8.260381 (6.658228) with: {'learning_rate': 0.24000000000000002, 'max_depth': 6, 'n_estimators': 200}

-8.470876 (6.728413) with: {'learning_rate': 0.24000000000000002, 'max_depth': 7, 'n_estimators': 100}

-8.480391 (6.731554) with: {'learning_rate': 0.24000000000000002, 'max_depth': 7, 'n_estimators': 200}

-7.967612 (6.650860) with: {'learning_rate': 0.27, 'max_depth': 4, 'n_estimators': 100}

-8.051922 (6.656565) with: {'learning_rate': 0.27, 'max_depth': 4, 'n_estimators': 200}

-8.121717 (6.575363) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 100}

-8.160381 (6.577406) with: {'learning_rate': 0.27, 'max_depth': 5, 'n_estimators': 200}

-8.070251 (6.545575) with: {'learning_rate': 0.27, 'max_depth': 6, 'n_estimators': 100}

-8.099537 (6.546567) with: {'learning_rate': 0.27, 'max_depth': 6, 'n_estimators': 200}

-8.128970 (6.796862) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 100}

-8.138011 (6.797582) with: {'learning_rate': 0.27, 'max_depth': 7, 'n_estimators': 200}

-8.291199 (6.426882) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 100}

-8.336647 (6.448367) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 200}

-8.148781 (6.531570) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 100}

-8.181453 (6.528953) with: {'learning_rate': 0.3, 'max_depth': 5, 'n_estimators': 200}

-8.488194 (6.555250) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100}

-8.499785 (6.552571) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 200}

-8.432480 (6.699986) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 100}

-8.437643 (6.698732) with: {'learning_rate': 0.3, 'max_depth': 7, 'n_estimators': 200}

XGBR_GSCV_Shuffle_time: 137.92240889430929


T2、调用XGBR_GSCV_Time()函数,调优+重要性可视化+特征选择模型


   XGBR_model = XGBRegressor( learning_rate=0.2, max_depth= 2, n_estimators=100 )     #XGBR_GSCV_Time()函数,第一次得到最佳参数组合,输出准确度: 0.929254087319193

image.png

image.png


image.png


Best: 0.8637 using {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 100}

XGBR_GSCV_Time score: 0.92951600308978

-53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 50}

-53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 100}

-52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 200}

-49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 2, 'n_estimators': 400}

-53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 50}

-53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 100}

-52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 200}

-49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 4, 'n_estimators': 400}

-53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 50}

-53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 100}

-52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 200}

-49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 6, 'n_estimators': 400}

-53.652829 (8.524886) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 50}

-53.111776 (8.432226) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 100}

-52.045728 (8.249767) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 200}

-49.976399 (7.896034) with: {'learning_rate': 0.0001, 'max_depth': 8, 'n_estimators': 400}

-48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 50}

-44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 100}

-36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 200}

-23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 2, 'n_estimators': 400}

-48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 50}

-44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 100}

-36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 200}

-23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 4, 'n_estimators': 400}

-48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 50}

-44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 100}

-36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 200}

-23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 6, 'n_estimators': 400}

-48.970063 (7.724229) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 50}

-44.237571 (6.918364) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 100}

-36.078697 (5.538471) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 200}

-23.929587 (3.519751) with: {'learning_rate': 0.001, 'max_depth': 8, 'n_estimators': 400}

-19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 50}

-6.744672 (0.933997) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 100}

-0.216053 (0.050337) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 200}

0.848897 (0.024814) with: {'learning_rate': 0.01, 'max_depth': 2, 'n_estimators': 400}

-19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 50}

-6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 100}

-0.254126 (0.091086) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 200}

0.831512 (0.008093) with: {'learning_rate': 0.01, 'max_depth': 4, 'n_estimators': 400}

-19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 50}

-6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 100}

-0.260028 (0.093910) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 200}

0.829355 (0.015182) with: {'learning_rate': 0.01, 'max_depth': 6, 'n_estimators': 400}

-19.414644 (2.830758) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 50}

-6.743499 (0.932824) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 100}

-0.258236 (0.092933) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 200}

0.831777 (0.028036) with: {'learning_rate': 0.01, 'max_depth': 8, 'n_estimators': 400}

0.852283 (0.003829) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 50}

0.813154 (0.046960) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 100}

0.829779 (0.037321) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 200}

0.832717 (0.031505) with: {'learning_rate': 0.1, 'max_depth': 2, 'n_estimators': 400}

0.785207 (0.061920) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 50}

0.757671 (0.097880) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 100}

0.772923 (0.083151) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200}

0.777985 (0.077499) with: {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 400}

0.800020 (0.031554) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 50}

0.722744 (0.115322) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 100}

0.718966 (0.120953) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 200}

0.716761 (0.123083) with: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators': 400}

0.816402 (0.004015) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 50}

0.766141 (0.059941) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 100}

0.756297 (0.069550) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 200}

0.755626 (0.070178) with: {'learning_rate': 0.1, 'max_depth': 8, 'n_estimators': 400}

0.855146 (0.003964) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 50}

0.863665 (0.002430) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 100}

0.862916 (0.000224) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 200}

0.849430 (0.007344) with: {'learning_rate': 0.2, 'max_depth': 2, 'n_estimators': 400}

0.758113 (0.097414) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 50}

0.759158 (0.098429) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 100}

0.754193 (0.102434) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 200}

0.748421 (0.107894) with: {'learning_rate': 0.2, 'max_depth': 4, 'n_estimators': 400}

0.780980 (0.061204) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 50}

0.773959 (0.067553) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 100}

0.773742 (0.067638) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 200}

0.773425 (0.067856) with: {'learning_rate': 0.2, 'max_depth': 6, 'n_estimators': 400}

0.804540 (0.032247) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 50}

0.800325 (0.036309) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 100}

0.800133 (0.036625) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 200}

0.800134 (0.036625) with: {'learning_rate': 0.2, 'max_depth': 8, 'n_estimators': 400}

0.804575 (0.055743) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 50}

0.823723 (0.042951) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 100}

0.832058 (0.027793) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 200}

0.824320 (0.028952) with: {'learning_rate': 0.3, 'max_depth': 2, 'n_estimators': 400}

0.684716 (0.174854) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 50}

0.683423 (0.176741) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 100}

0.676494 (0.183628) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 200}

0.676418 (0.183173) with: {'learning_rate': 0.3, 'max_depth': 4, 'n_estimators': 400}

0.533161 (0.294224) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 50}

0.520398 (0.307576) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 100}

0.520455 (0.307122) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 200}

0.520411 (0.307169) with: {'learning_rate': 0.3, 'max_depth': 6, 'n_estimators': 400}

0.666960 (0.156246) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 50}

0.668800 (0.154254) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 100}

0.668832 (0.154209) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 200}

0.668832 (0.154209) with: {'learning_rate': 0.3, 'max_depth': 8, 'n_estimators': 400}

XGBR_GSCV_Time_time: 61.41017997421118


相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
143 7
|
3月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
144 6
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
5月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
|
6月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
173 14
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
8月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
478 6
|
6月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1008 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
7月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
204 2

热门文章

最新文章