大模型开发:你如何使用大数据进行模型训练?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 在大数据模型训练中,关键步骤包括数据准备(收集、清洗、特征工程、划分),硬件准备(分布式计算、并行训练),模型选择与配置,训练与优化,监控评估,以及模型的持久化与部署。过程中要关注数据隐私、安全及法规遵循,利用技术进步提升效率和性能。

在使用大数据进行模型训练时,遵循以下关键步骤:

  1. 数据准备

    • 数据收集:首先,你需要获取足够大规模的数据集,这些数据应当与你试图解决的任务相关联,比如文本数据、图像数据、音频数据、交易数据等。
    • 数据清洗:清洗数据以去除异常值、缺失值和重复项,标准化或归一化数值数据,处理文本数据的停用词、标点符号和编码问题等。
    • 特征工程:创建有助于模型学习的特征,可能涉及特征提取、衍生新特征、特征选择等。
    • 数据划分:将数据集划分为训练集、验证集和测试集,确保模型训练、调参和最后评估的公正性。
  2. 硬件和基础设施准备

    • 分布式计算:对于非常大的数据集,可能需要用到分布式计算框架,如Apache Spark、Hadoop MapReduce,或者直接利用云计算平台的分布式存储和计算能力。
    • 并行训练:利用多GPU或多节点的并行计算技术,如数据并行、模型并行、流水线并行等,将模型分布在多台机器上进行训练,以加速训练过程并应对内存限制。
  3. 选择和配置模型

    • 模型选择:依据任务需求和数据特点选择合适的模型架构,对于大数据常常倾向于使用深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)、自注意力模型(Transformer)等。
    • 超参数设定:合理设定学习率、批次大小、正则化强度等超参数,可能还需要使用自动调参工具或网格搜索来进行优化。
  4. 模型训练与优化

    • 初始化模型:使用合适的方法初始化模型参数。
    • 训练过程:通过反向传播和梯度下降法或其他优化算法更新模型参数,使用训练数据集进行迭代训练。
    • 验证与调优:在每次训练迭代后,使用验证集评估模型性能,根据验证指标调整模型架构或超参数。
  5. 监控与性能评估

    • 训练监控:实时监测模型在训练过程中的损失函数、准确性以及其他性能指标的变化。
    • 资源管理:确保在大数据训练时的内存管理和磁盘IO不会成为瓶颈。
  6. 持久化与部署

    • 模型保存:训练好的模型需要被保存下来,以便后续在生产环境中加载和使用。
    • 模型服务化:将模型部署到生产环境,通过API、微服务或者其他应用形式对外提供预测服务。

在整个过程中,充分利用大数据的优势的同时,还需注意数据隐私保护、数据安全以及遵守相关的法律法规。此外,随着技术的发展,如谷歌发布的TpuGraphs数据集和相应的编译器优化,可以帮助大模型在训练阶段更加有效地利用数据,提高训练效率和模型性能。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
9天前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
3月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
189 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
21天前
|
人工智能 自然语言处理 运维
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
62 6
|
27天前
|
人工智能 JSON 自然语言处理
如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。 相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
65 1
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
1月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
1月前
|
运维 自然语言处理 算法
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
216 3