TF之CNN:Tensorflow构建卷积神经网络CNN的简介、使用方法、应用之详细攻略-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

TF之CNN:Tensorflow构建卷积神经网络CNN的简介、使用方法、应用之详细攻略

简介: TF之CNN:Tensorflow构建卷积神经网络CNN的简介、使用方法、应用之详细攻略
+关注继续查看

目录


TensorFlow 中的卷积有关函数入门


1、tf.nn.conv2d函数


案例应用


1、TF之CNN:Tensorflow构建卷积神经网络CNN


2、使用简单的函数来替代上面的定义





TensorFlow 中的卷积有关函数入门


   TensorFlow 构建卷积网络之前,我们需要了解一下 TensorFlow 中的函数:conv_2d() 和 fully_connected() 函数分别构建了卷积层和全连接层。通过这些函数,层级的数量、滤波器的大小/深度、激活函数的类型等都可以明确地作为一个参数。权重矩阵和偏置向量能自动创建,附加激活函数和 dropout 正则化层同样也能轻松构建。


1、tf.nn.conv2d函数


tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

除去name参数用以指定该操作的name,与方法有关的一共五个参数:

第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4

第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)

第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。



案例应用


1、TF之CNN:Tensorflow构建卷积神经网络CNN


#TF之CNN:Tensorflow构建卷积神经网络CNN

#1、定义卷积层网络

import  tensorflow  as  tf    

w1 = tf. Variable (tf.truncated_normal([filter_size, filter_size, image_depth, filter_depth], stddev= 0.1 ))

b1 = tf. Variable (tf.zeros([filter_depth]))  

layer1_conv = tf.nn.conv2d(data, w1, [ 1 ,  1 ,  1 ,  1 ], padding= 'SAME' )

layer1_relu = tf.nn.relu(layer1_conv + b1)

layer1_pool = tf.nn.max_pool(layer1_pool, [ 1 ,  2 ,  2 ,  1 ], [ 1 ,  2 ,  2 ,  1 ], padding= 'SAME' )



2、使用简单的函数来替代上面的定义


#2、使用简单的函数来替代上面的定义

from  tflearn.layers.conv  import  conv_2d, max_pool_2d    

layer1_conv = conv_2d(data, filter_depth, filter_size, activation= 'relu' )

layer1_pool = max_pool_2d(layer1_conv_relu,  2 , strides= 2 )


 

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
TensorFlow 实战卷积神经网络之 LeNet
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! LeNet 项目简介 1994 年深度学习三巨头之一的 Yan LeCun 提出了 LeNet 神经网络,这是最早的卷积神经网络。
2872 0
卷积神经网络概述
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 卷积神经网络 图像识别问题和数据集 > 计算机视觉中有哪些问题?典型问题:经典数据集。
1197 0
Fabrik – 在浏览器中协作构建,可视化,设计神经网络
Fabrik是一个在线协作平台,通过简单的拖放界面来构建,可视化和训练深度学习模型。 它允许研究人员使用Web GUI协同开发和调试模型,该GUI支持导入,编辑和导出广泛流行的框架(如Caffe,Keras和TensorFlow)编写和导出的网络。
828 0
在TensorFlow中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型。
911 0
Android开发10——Activity的跳转与传值_显示意图(intent)的应用
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。 intent可以激活Activity,服务,广播三类组件。 本博文讲的是显示意图激活Activity组件。所谓显示意图就是在activity的激活时,显示指出了需要激活的activity的名字。   一、Activity跳转 方法一 Intent intent = new Inten
1050 0
TensorFlow 卷积神经网络手写数字识别数据集介绍
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。
1461 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载