DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略

简介: DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略

目录


darknet的简介


darknet的安装


darknet的使用方法


1、YOLO: Real-Time Object Detection


2、ImageNet Classification


3、Nightmare


4、RNNs in Darknet


5、DarkGo: Go in Darknet


6、Train a Classifier on CIFAR-10


7、Hardware Guide: Neural Networks on GPUs (Updated 2016-1-30)



darknet的简介


      Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.


For more information see the Darknet project website.

For questions or issues please use the Google Group.

       Darknet: Open Source Neural Networks in C.  Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. You can find the source on GitHub or you can read more about what Darknet can do right here.


官网:https://pjreddie.com/darknet/

GitHub:https://github.com/pjreddie/darknet


      darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。


      相比于TensorFlow来说,darknet并没有那么强大,但这也成了darknet的优势:  

darknet完全由C语言实现,没有任何依赖项,当然可以使用OpenCV,但只是用其来显示图片、为了更好的可视化;  

darknet支持CPU(所以没有GPU也不用紧的)与GPU(CUDA/cuDNN,使用GPU当然更块更好了);  

       正是因为其较为轻型,没有像TensorFlow那般强大的API,所以给我的感觉就是有另一种味道的灵活性,适合用来研究底层,可以更为方便的从底层对其进行改进与扩展;  darknet的实现与caffe的实现存在相似的地方,熟悉了darknet,相信对上手caffe有帮助;



darknet的安装

git clone https://github.com/pjreddie/darknet

image.png



darknet的使用方法


后期继续更新……


@misc{darknet13,

 author =   {Joseph Redmon},

 title =    {Darknet: Open Source Neural Networks in C},

 howpublished = {\url{http://pjreddie.com/darknet/}},

 year = {2013--2016}

}

1、YOLO: Real-Time Object Detection


You only look once (YOLO) is a state-of-the-art, real-time object detection system.



2、ImageNet Classification


Classify images with popular models like ResNet and ResNeXt.



3、Nightmare


Use Darknet's black magic to conjure ghosts, ghouls, and wild badgermoles. But be warned, ye who enter here: no one is safe in the land of nightmares.



4、RNNs in Darknet


Recurrent neural networks are all the rage for time-series data and NLP. Learn how to use them in Darknet!



5、DarkGo: Go in Darknet


Play Go using a policy network trained with Darknet



6、Train a Classifier on CIFAR-10


Learn how to train a classifier from scratch in Darknet.



7、Hardware Guide: Neural Networks on GPUs (Updated 2016-1-30)


I've had a number of people ask me what hardware I would recommend for training neural networks for vision applications. Here are some of my thoughts.


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
261 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
1月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
390 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
1天前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
3月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
76 7
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
857 1
深度学习环境搭建笔记(一):detectron2安装过程
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
378 3
|
27天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
73 22
|
2月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
207 6
|
6天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40
|
1天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
15 6