DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略

简介: DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略

目录


darknet的简介


darknet的安装


darknet的使用方法


1、YOLO: Real-Time Object Detection


2、ImageNet Classification


3、Nightmare


4、RNNs in Darknet


5、DarkGo: Go in Darknet


6、Train a Classifier on CIFAR-10


7、Hardware Guide: Neural Networks on GPUs (Updated 2016-1-30)



darknet的简介


      Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.


For more information see the Darknet project website.

For questions or issues please use the Google Group.

       Darknet: Open Source Neural Networks in C.  Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. You can find the source on GitHub or you can read more about what Darknet can do right here.


官网:https://pjreddie.com/darknet/

GitHub:https://github.com/pjreddie/darknet


      darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。


      相比于TensorFlow来说,darknet并没有那么强大,但这也成了darknet的优势:  

darknet完全由C语言实现,没有任何依赖项,当然可以使用OpenCV,但只是用其来显示图片、为了更好的可视化;  

darknet支持CPU(所以没有GPU也不用紧的)与GPU(CUDA/cuDNN,使用GPU当然更块更好了);  

       正是因为其较为轻型,没有像TensorFlow那般强大的API,所以给我的感觉就是有另一种味道的灵活性,适合用来研究底层,可以更为方便的从底层对其进行改进与扩展;  darknet的实现与caffe的实现存在相似的地方,熟悉了darknet,相信对上手caffe有帮助;



darknet的安装

git clone https://github.com/pjreddie/darknet

image.png



darknet的使用方法


后期继续更新……


@misc{darknet13,

 author =   {Joseph Redmon},

 title =    {Darknet: Open Source Neural Networks in C},

 howpublished = {\url{http://pjreddie.com/darknet/}},

 year = {2013--2016}

}

1、YOLO: Real-Time Object Detection


You only look once (YOLO) is a state-of-the-art, real-time object detection system.



2、ImageNet Classification


Classify images with popular models like ResNet and ResNeXt.



3、Nightmare


Use Darknet's black magic to conjure ghosts, ghouls, and wild badgermoles. But be warned, ye who enter here: no one is safe in the land of nightmares.



4、RNNs in Darknet


Recurrent neural networks are all the rage for time-series data and NLP. Learn how to use them in Darknet!



5、DarkGo: Go in Darknet


Play Go using a policy network trained with Darknet



6、Train a Classifier on CIFAR-10


Learn how to train a classifier from scratch in Darknet.



7、Hardware Guide: Neural Networks on GPUs (Updated 2016-1-30)


I've had a number of people ask me what hardware I would recommend for training neural networks for vision applications. Here are some of my thoughts.


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
人工智能
使用钉钉扫一扫加入圈子
+ 订阅

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

其他文章
最新文章
相关文章