机器学习基础实践教学开发 | 开发者社区精选文章合集(十九)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 当今机器学习正带来一场全新的技术变革,实践应用更是重中之重,零基础入门机器学习,宝藏分享来啦!

每日集成开发者社区精品内容,你错过的干货补给站


每日精选博文推荐

mpyzbuwu.jpg

你相亲成功的几率有多高?机器学习硬核预测

深度学习是当下最热门的人工智能技术,然而对于算法工程师来说,要搭建一套学习和工作的开发环境却较为困难。阿里云机器学习平台PAI推出了一款云端机器学习开发IDE:PAI-DSW,并免费开放给个人开发者。本文将分享阿里云在机器学习工程上的发展、沉淀和创新,并通过案例《大数据算命系列之用机器学习评估你的相亲战斗力》,手把手教同学们从入门到快速进阶。>>戳我前往了解全文

零基础入门机器学习:如何识别一只猫?

如何让机器识别一只猫?本文从人认识猫的基本方法入手,讲解如何训练机器获得模型的主要步骤,并进行简单的实践,分享了机器学习的一个基本原理——梯度下降实现线性回归。>>点击阅读全文

如何落地一个算法?

在解决实际问题的时候,很多人认为只要有机器学习算法就可以了,实际上要把一个算法落地还需要解决很多工程上的难题。本文将和大家分享如何从零开始搭建一个GPU加速的分布式机器学习系统,介绍在搭建过程中遇到的问题和解决方法。>>点击了解全文

主动学习方法实践:让模型变“主动”

在机器学习的监督学习中,我们的目标是让模型不断学习带有标签的历史数据,从而提高模型在该领域的泛化能力。一般情况下,在上述的过程中,模型所学习的历史数据都是事先准备好的(数据采集,预处理,打标),有多少数据,模型就学习多少数据。换言之,模型在被动地学习我们事先提供的数据。本文分享一种主动学习方法,让模型参与“学习样本”的选择,根据不同策略,对样本池中的所有样本进行区分,提升模型性能。>>点击阅读全文

每日精选电子书

《阿里云机器学习PAI-DSW入门指南》

《阿里云机器学习PAI-DSW入门指南》PAI-DSW云端IDE大揭秘,从新手攻略到实践场景,手把手教你快速从入门到进阶,实战参与评估你的相亲战斗力、CNN手写识别模型、热狗识别模型、验证语音降噪等四大场景。

>>点击下载,《阿里云机器学习PAI-DSW入门指南》

《个性化推荐系统开发指南》

亚马逊的CEO Jeff Bezos曾经说过,他的梦想是“如果我有100万个用户,我就要为他们做100万个亚马逊网站”。而智能推荐系统的出现,就是为了实现这个梦想,智能推荐系统解决的是一个信息比对的问题,怎么样基于用户的信息和商品的信息去做一个更好的匹配,为每一个用户实现个性化的推荐结果,这是推荐系统要解决的问题。从“千人一面”到“千人千面”,这个世界因智能推荐系统变得更人性化、更丰富、更美好。《个性化推荐系统开发指南》这本电子书基于PAI构建企业级推荐系统,从推荐算法开始,到系统工程问题讲解,教你构建一个完整的推荐系统。

>>点击下载,《个性化推荐系统开发指南》


热门推荐

每日集成开发者社区精品内容,请持续关注!

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
机器学习/深度学习 算法 算法框架/工具
为什么使用C++进行机器学习开发
C++作为一种高性能语言,在某些性能要求极高或资源受限的场景下也具有非常重要的地位。C++的高效性和对底层硬件的控制能力,使其在大规模机器学习系统中发挥重要作用,尤其是当需要处理大数据或实时响应的系统时。
47 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
47 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
56 1
|
1月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践
本文将带你进入机器学习的世界,从基本概念出发,深入探讨其背后的数学原理,再通过Python代码示例,展示如何实际应用这些理论。无论你是初学者还是有经验的开发者,都能从中获益。
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
2月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践
【9月更文挑战第24天】本文将带你走进机器学习的世界,了解其基本概念,探索其背后的数学原理,并通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是初学者还是有经验的开发者,都能在这篇文章中找到新的视角和深入的理解。
42 9

热门文章

最新文章